Antibiotic resistance of surface water Vibrio cholerae non-O1/non-O139 isolates
https://doi.org/10.35627/2219-5238/2022-30-3-66-71
Abstract
Introduction: V. cholerae non-O1/non-O139 strains are etiological agents of acute intestinal infections of various severity. Monitoring of antibacterial drug resistance of their environmental isolates circulating in specific areas is of great importance for local disease prediction and prevention as well as for an effective choice of drugs for etiotropic therapy.
Objective: To study antibacterial drug resistance of V. cholerae non-O1/non-O139 strains isolated from surface water samples within the annual monitoring of cholera at the Reference Center of the Rostov-on-Don Anti-Plague Research Institute in 2019–2020.
Materials and methods: We tested 263 and 87 V. cholerae non-O1/non-O139 strains isolated from surface water samples in the years 2019 and 2020, respectively, for susceptibility and/or resistance to antibacterial drugs recommended for emergency cholera prevention and treatment using the method of serial dilutions in Mueller–Hinton agar.
Results and discussion: All the isolates were typical non-toxigenic V. cholerae strains containing hlyA genes and lacking wbe-, wbf-, ctxA, tcpA- ones. When comparing the annual proportions of Vibrio cholerae species resistant to different antibiotics, we observed statistically significant changes in the share of those resistant to ampicillin (from 39.2 % to 98.8 %), cefotaxime (from 1.5 % to 5.7 %), and rifampicin (from 31.2 % to 8.0 %). All the studied vibrios remained susceptible to gentamicin and doxycyicline. The data for 2019–2020 indicate a statistical increase in the proportion of multidrug-resistant strains.
Conclusion: Our findings substantiate the necessity of further monitoring studies to understand the spread of antibacterial drug resistance among V. cholerae non-O1/nonO-139 strains.
About the Authors
A. V. TrishinaRussian Federation
Alena V. Trishina, Cand. Sci. (Biol.), Senior Researcher, Laboratory of Biological Safety and Treatment
117/40 Maxim Gorky Street, Rostov-on-Don, 344002
E. A. Bereznyak
Russian Federation
Elena A. Bereznyak, Cand. Sci. (Biol.), Senior Researcher, Laboratory of Biological Safety and Treatment
117/40 Maxim Gorky Street, Rostov-on-Don, 344002
M. I. Ezhova
Russian Federation
Maria I. Ezhova, Researcher, Laboratory of Cholera Microbiology
117/40 Maxim Gorky Street, Rostov-on-Don, 344002
Yu. L. Bereznyak
Russian Federation
Yury L. Bereznyak, Cand. Sci. (Biol.), Associate Professor, Head of the Department of Physics
29 Nakhichevansky Lane, Rostov-on-Don, 344022
O. S. Chemisova
Russian Federation
Olga S. Chemisova, Cand. Sci. (Biol.), Acting Head of the Museum of Living Cultures with the Center for Pathogenic Vibrio Species
117/40 Maxim Gorky Street, Rostov-on-Don, 344002
References
1. Petsaris O, Nousbaum JB, Quilici ML, Le Coadou G, Payan C, Abalain ML. Non-O1, non-O139 Vibrio cholerae bacteraemia in a cirrhotic patient. J Med Microbiol. 2010;59(Pt10):1260-1262. doi: 10.1099/jmm.0.021014-0
2. Lan NP, Nga TV, Yen NT, et al. Two cases of bacteriemia caused by nontoxigenic, non-O1, non-O139 Vibrio cholerae isolates in Ho Chi Minh City, Vietnam. J Clin Microbiol. 2014;52(10):3819-3821. doi: 10.1128/JCM.01915-14
3. Monakhova EV, Arkhangel’skaya IV. Cholera vibrios of nonO1/nonO139 serogroups in etiology of acute intestinal infections: Current situation in Russia and around the world. Problemy Osobo Opasnykh Infektsiy. 2016;(2):14-23. (In Russ.) doi: 10.21055/0370-1069-2016-2-14-23
4. Arhangelskaya IV, Nepomnyashchaya NB, Levchenko DA. [Extraintestinal diseases caused by Vibrio cholerae non-O1/non-O139 serogroups in Russia.] In: Infectious Diseases in the Modern World: Epidemiology, Diagnosis, Treatment and Prevention: Proceedings of the XII Annual All-Russian Internet Congress on Infectious Diseases with international participation, Moscow, September 7-9, 2020. Pokrovsky VI, ed. Moscow: Medical Marketing Agency Publ.; 2020:19. (In Russ.)
5. Dutta D, Chowdhury G, Pazhani GP, et al. Vibrio cholera non-O1, non-O139 serogroups and cholera-like diarrhea, Kolkata, India. Emerg Infect Dis. 2013;19(3):464-467. doi: 10.3201/eid1903.121156
6. Baker-Austin C, Trinanes JA, Taylor NGH, Hartnell R, Siitonen A, Martinez-Urtaza J. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat Clim Change. 2013;3:73-77. doi: 10.1038/nclimate1628
7. Marinello S, Marini G, Parisi G, et al. Vibrio cholerae non-O1, non-O139 bacteraemia associated with pneumonia, Italy 2016. Infection. 2017;45(2):237-240. doi: 10.1007/s15010-016-0961-4
8. Chen YT, Tang HJ, Chao CM, Lai CC. Clinical manifestations of non-O1 Vibrio cholerae infections. PLoS One. 2015;10(1):e0116904. doi: 10.1371/journal.pone.0116904
9. Dobrović K, Rudman F, Ottaviani D, Šestan Crnek S, Leoni F, Škrlin J. A rare case of necrotizing fasciitis caused by Vibrio cholerae O8 in an immunocompetent patient. Wien Klin Wochenschr. 2016;128(19-20):728-730. doi: 10.1007/s00508-016-1060-3
10. Kechker P, Senderovich Y, Ken-Dror S, Laviad-Shitrit S, Arakawa E, Halpern M. Otitis media caused by V. cholerae O100: A case report and review of the literature. Front Microbiol. 2017;8:1619. doi: 10.3389/fmicb.2017.01619
11. Chowdhury G, Joshi S, Bhattacharya S, et al. Extraintestinal infections caused by non-toxigenic Vibrio cholerae non-O1/non-O139. Front Microbiol. 2016;7:144. doi: 10.3389/fmicb.2016.00144
12. Zhu HZ, Zhang ZF, Zhou N, et al. Diversity, distribution and co-occurrence patterns of bacterial communities in a karst cave system. Front Microbiol. 2019;10:1726. doi: 10.3389/fmicb.2019.01726
13. Das B, Chaudhuri S, Srivastava R, Nair GB, Ramamurthy T. Fostering research into antimicrobial resistance in India. BMJ. 2017;358:j3535. doi: 10.1136/bmj.j3535
14. Verma J, Bag S, Saha B, et al. Genomic plasticity associated with antimicrobial resistance in Vibrio cholerae. Proc Natl Acad Sci U S A. 2019;116(13):6226-6231. doi: 10.1073/pnas.1900141116
15. Kitaoka M, Miyata ST, Unterweger D, Pukatzki S. Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol. 2011;60(Pt 4):397-407. doi: 10.1099/jmm.0.023051-0
16. Mala W, Faksri K, Samerpitak K, et al. Antimicrobial resistance and genetic diversity of the SXT element in Vibrio cholerae from clinical and environmental water samples in northeastern Thailand. Infect Genet Evol. 2017;52:89-95. doi: 10.1016/j.meegid.2017.04.013
17. Das B, Verma J, Kumar P, Ghosh A, Ramamurthy T. Antibiotic resistance in Vibrio cholerae: Understanding the ecology of resistance genes and mechanisms. Vaccine. 2020;38 Suppl 1:A83-A92. doi: 10.1016/j.vaccine.2019.06.031
18. Grennia P., Anconab V., Caraccioloa A.B. Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal. 2018;136:25-39. doi: 10.1016/j.microc.2017.02.006
19. Avdeeva EP, Mazruho BL, Ishina EV, et al. Evaluation of the method of serological identification of nonO1 Vibrio cholerae isolates. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii. 2001;(4):75-78. (In Russ.)
20. Baquero F, Martínez JL, Cantón R. Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol. 2008;19(3):260-265. doi: 10.1016/j.copbio.2008.05.006
21. Bereznyak EA, Trishina AV, Arkhangelskaya IV, Simonova IR, Chemisova OS. Antibiotic sensitivity of Vibrio cholerae non-O1/non-O139 serogroups isolated from aquatic ecosystems. Zdorov’e Naseleniya i Sreda Obitaniya. 2020;(5(326)):52-56. (In Russ.) doi: 10.35627/2219-5238/2020-326-5-52-56
22. Utepova IB, Sagiyev ZA, Alybayev SD, et al. Characteristics of cholera strains isolated in Kazakhstan. Acta Biomedica Scientifica. 2017;2(5-1):100105. (In Russ.) doi: 10.12737/article_59e8597494f893.97278235
23. Siriphap A, Leekitcharoenphon P, Kaas RS, et al. Characterization and genetic variation of Vibrio cholerae isolated from clinical and environmental sources in Thailand. PLoS One. 2017;12(1):e0169324. doi: 10.1371/journal.pone.0169324
24. Eibach D, Herrera-León S, Gil H, et al. Molecular epidemiology and antibiotic susceptibility of Vibrio cholerae associated with a large cholera outbreak in Ghana in 2014. PLoS Negl Trop Dis. 2016;10(5):e0004751. doi: 10.1371/journal.pntd.0004751
25. Marin MA, Thompson CC, Freitas FS, et al. Cholera outbreaks in Nigeria are associated with multidrug resistant atypical El Tor and non-O1/non-O139 Vibrio cholerae. PLoS Negl Trop Dis. 2013;7(2):e2049. doi: 10.1371/journal.pntd.0002049
26. Bassetti M, Peghin M, Pecori D. The management of multidrug-resistant Enterobacteriaceae. Curr Opin Infect Dis. 2016;29(6):583-594. doi: 10.1097/QCO.0000000000000314
27. Bereznyak EA, Trishina AV, Verkina LM, Poleeva MV, Simonova IR, Bareeva AE. Study of species diversity and antimicrobial resistance of microflora of the Rostov-on-Don water bodies. Gigiena i Sanitariya. 2018;97(5):405-410. (In Russ.) doi: 10.18821/0016-9900-2018-97-5-405-410
28. Das B, Verma J, Kumar P, Ghosh A, Ramamurthy T. Antibiotic resistance in Vibrio cholerae: Understanding the ecology of resistance genes and mechanisms. Vaccine. 2020;38 Suppl 1:A83-A92. doi: 10.1016/j.vaccine.2019.06.031
Review
For citations:
Trishina A.V., Bereznyak E.A., Ezhova M.I., Bereznyak Yu.L., Chemisova O.S. Antibiotic resistance of surface water Vibrio cholerae non-O1/non-O139 isolates. Public Health and Life Environment – PH&LE. 2022;(3):66-71. (In Russ.) https://doi.org/10.35627/2219-5238/2022-30-3-66-71