Preview

Public Health and Life Environment – PH&LE

Advanced search

Survival Ability of the COVID-19 Causative Agent in Aquatic Environment: A Literature Review

https://doi.org/10.35627/2219-5238/2021-336-3-84-90

Abstract

Background. The article presents an overview of foreign and Russian scientific data on possible natural reservoirs of the COVID-19 causative agent, SARS-CoV-2 transmission routes, and measures taken to combat it in an aquatic environment. The objective of this review is to determine the possibility and features of SARS-CoV-2 dissemination through the aquatic environment, taking into account statistical significance of the results obtained and the compliance of scientific research with the criteria of evidence-based medicine.

Methods. We used keywords “COVID-19”, “wastewater”, “treatment facilities”, and “river water” to search the electronic databases, including Web of Science, Scopus, PubMed, eLIBRARY, and ResearchGate, for journal articles on the topic. Out of 109 search results, we chose 85 papers and, having analyzed them, selected 55 most rel­evant articles for this review. The presence of the COVID-19 causative agent has been shown in various environmental objects including water supply systems, wastewater, and surface waters. Methods for detecting SARS-CoV-2 particles based on the detection of strains of other viruses in environmental objects have been determined. They demonstrated that the independent entry of the virus into the ecosystem occurs due to its absorption by various fomites. The review presents the results of studies conducted in a number of countries during the pandemic, confirming the presence of SARS-CoV-2 in river water. Some stud­ies indicate the resistance of viral particles present in environmental objects to disinfectants, which, in its turn, determines the relevance of in-depth studies from the standpoint of ensuring sanitary and anti-epidemic regimen at water treatment plants.

Conclusions. The analysis of the world experience enabled us to establish the SARS-CoV-2 survival ability in the aquatic envi­ronment of urbanized areas and to identify its alternative transmission routes in the environment. In modern conditions, due to a poor efficiency of sewage treatment plants in terms of virions, the spread of SARS-CoV-2 in the environment posing a potential risk of the coronavirus disease is quite possible. Our findings will help develop new preventive measures to maintain safety of water bodies and sanitary protection zones. Their implementation will contribute to improvement of the epidemic situation in our country.

About the Authors

P. V. Zhuravlev
Rostov Research Institute of Microbiology and Parasitology; Rostov State Medical University
Russian Federation

Pyotr V. Zhuravlev, D.M.Sc., Head of the Laboratory of Sanitary Microbiology of Water Bodies and Human Microbial Ecology

119 Gazetny Lane, Rostov-on-Don, 344000; 29 Nakhichevansky Lane, Rostov-on-Don, 344022



A. S. Kalyuzhin
Rostov Research Institute of Microbiology and Parasitology
Russian Federation

Alexander S. Kalyuzhin, Junior Researcher, Laboratory of Sanitary Microbiology of Water Bodies and Human Microbial Ecology

119 Gazetny Lane, Rostov-on-Don, 344000



M. A. Kulak
Rostov Research Institute of Microbiology and Parasitology
Russian Federation

Maria A. Kulak, Junior Researcher, Laboratory of Sanitary and Parasitological Monitoring, Medical Parasitology and Immunology

119 Gazetny Lane, Rostov-on-Don, 344000



N. V. Aleksanina
Rostov Research Institute of Microbiology and Parasitology
Russian Federation

Natalya V. Aleksanina, Candidate of Biological Sciences, Senior Researcher, Laboratory of Sanitary Microbiology of Water Bodies and Human Microbial Ecology

119 Gazetny Lane, Rostov-on-Don, 344000



M. N. Gapon
Rostov Research Institute of Microbiology and Parasitology
Russian Federation

Marina N. Gapon, Candidate of Biological Sciences, Leading Researcher, Laboratory of Sanitary Microbiology of Water Bodies and Human Microbial Ecology

119 Gazetny Lane, Rostov-on-Don, 344000



T. I. Tverdokhlebova
Rostov Research Institute of Microbiology and Parasitology; Rostov State Medical University
Russian Federation

Tatyana I. Tverdokhlebova, D.M.Sc., Director

119 Gazetny Lane, Rostov-on-Don, 344000; 29 Nakhichevansky Lane, Rostov-on-Don, 344022



References

1. World Health Organization. Summary table of SARS cases by country, 1 November 2002 – 7 August 2003. Weekly Epidemiological Record. 2003; 78(35):310–311. Available at: https://apps.who.int/iris/handle/10665/232250. Accessed: 1 Sept 2020.

2. Kampf G, Todt D, Pfaender S, et al. Persistence of coronaviruses on inanimate surfaces and its inactivation with biocidal agents. J Hosp Infect. 2020; 104(3):246–51. DOI: 10.1016/j.jhin.2020.01.022

3. Chuchalin AG. [Syndrome of acute lung injury.] RMZh. 2006; 14(22):1582. (In Russian).

4. Riley S, Fraser C, Donnelly CA, et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science. 2003; 300(5627):1961–6. DOI: https://doi.org/10.1126/science.1086478

5. Lipsitch M, Cohen T, Cooper B, et al. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003; 300(5627):1966–70. DOI: https://doi.org/10.1126/science.1086616

6. World Health Organization. (2020). Surveillance case definitions for human infection with novel coronavirus (nCoV): interim guidance, 11 January 2020. Available at: https://apps.who.int/iris/handle/10665/330376. Accessed: 1 Sept 2020.

7. Disease commodity package – Novel Coronavirus (COVID-19). WHO Reference Number: WHO/2019-nCoV/DCPv3/2020.4. WHO Headquarters, 6 March 2020. Available at: https://www.who.int/publications-detail/disease-commodity-package--- novel-coronavirus-(ncov). Accessed: 1 Sept 2020.

8. Zolin VV, Oskina ОP, Solodsky VV, et al. [Study of the viability of SARS-CoV-2 in potable and marine water.] СOVID19-preprints.microbe.ru. (In Russian). Available at: https://doi.org/10.21055/preprints-3111723

9. Cruvinel VRN, Marques CP, Cardoso V, et al. Health conditions and occupational risks in a novel group: waste pickers in the largest open garbage dump in Latin America. BMC Public Health. 2019; 19(1):581. DOI: https://doi.org/10.1186/s12889-019-6879-x

10. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395(10223):507–513. DOI: https://doi.org/10.1016/S0140-6736(20)30211-7

11. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323(11):1061–1069. DOI: https://doi.org/10.1001/jama.2020.1585

12. Wölfel R, , Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020; 581(7809):465–469. DOI: https://doi.org/10.1038/s41586-020-2196-x

13. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223):497–506. DOI: https://doi.org/10.1016/S0140-6736(20)30183-5

14. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020; 382(10):929–936. DOI: https://doi.org/10.1056/NEJMoa2001191

15. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798):270–273. DOI: https://doi.org/10.1038/s41586-020-2012-7

16. Mallapaty S. How sewage could reveal true scale of coronavirus outbreak. Nature. 2020; 580(7802):176–177. DOI: https://doi.org/10.1038/d41586-020-00973-x

17. Lesté-Lasserre C. Coronavirus found in Paris sewage points to early warning system. Science Mag. Apr. 21, 2020. DOI: https://doi.org/10.1126/science.abc3799. Available at: https://www.sciencemag.org/news/2020/04/coronavirus-found-paris-sewage-points-early-warning-system Accessed: 1 Sept 2020.

18. Gu J, Han B, Wang J. COVID-19: Gastrointestinal manifestations and potential fecal–oral transmission. Gastroenterology. 2020; 158(6):1518–1519. DOI: https://doi.org/10.1053/j.gastro.2020.02.054

19. Kam KQ, Yung CF, Cui L, et al. A well infant with coronavirus disease 2019 with high viral load. Clin Infect Dis. 2020; 71(15):847–849. DOI: https://doi.org/10.1093/cid/ciaa201

20. Ling Y, Xu SB, Lin YX, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl). 2020; 133:1039–1043. DOI: https://doi.org/10.1097/CM9.0000000000000774

21. Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020; 323(18):1843–1844. DOI: https://doi.org/10.1001/jama.2020.3786

22. Xing Y-H, Ni W, Wu Q, et al. Prolonged viral shedding in feces of pediatric patients with coronavirus disease 2019. J Microbiol Immunol Infect. 2020; 53(3):473-480. DOI: https://doi.org/10.1016/j.jmii.2020.03.021

23. Tang A, Tong ZD, Wang HL, et al. Detection of novel coronavirus by RT-PCR in stool specimen from asymptomatic child, China. Emerg Infect Dis. 2020; 26(6):1337–1339. DOI: https://doi.org/10.3201/eid2606.200301

24. Xu Y, Li X, Zhu B, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med. 2020; 26(4):502–505. DOI: https://doi.org/10.1038/s41591-020-0817-4

25. Munster VJ, Koopmans M, van Doremalen N, et al. A novel coronavirus emerging in China – Key questions for impact assessment. N Engl J Med. 2020; 382(8):692–694. DOI: https://doi.org/10.1056/NEJMp2000929

26. Harmer D, Gilbert M, Borman R, et al. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002; 532(1–2):107–110. DOI: https://doi.org/10.1016/s0014-5793(02)03640-2

27. Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005; 69(4):635–664. DOI: https://doi.org/10.1128/MMBR.69.4.635-664.2005

28. World Health Organization. Water, sanitation, hygiene, and waste management for the COVID-19 virus. Interim guidance. 19 March 2020. WHO reference number: WHO/2019-nCoV/IPC_WASH/2020.2.

29. Shutler JD, Zaraska K, Holding TM, et al. Rapid assessment of SARS-CoV-2 transmission risk for fecally contaminated river water. ACS EST Water. DOI: https://doi.org/10.1021/acsestwater.0c00246

30. Li RA, McDonald JA, Sathasivan A, et al. Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: A systematic review. Water Res. 2019; 153:335–348. DOI: https://doi.org/10.1016/j.watres.2019.01.020

31. Guerrero-Latorre L, Ballesteros I, Villacrés-Granda I, et al. SARS-CoV-2 in river water: Implications in low sanitation countries. Sci Total Environ. 2020; 743:140832. DOI: https://doi.org/10.1016/j.scitotenv.2020.140832

32. Rodriguez DJ, Serrano HA, Delgado A, et al. From waste to resource. Water Papers. March 2020. World Bank. DOI: https://doi.org/10.1596/33436

33. Voloshenko-Rossin A, Gasser G, Cohen K, et al. Emerging pollutants in the Esmeraldas watershed in Ecuador: discharge and attenuation of emerging organic pollutants along the San Pedro–Guayllabamba–Esmeraldas rivers. Environ Sci Process Impacts. 2015; 17(1):41–53. DOI: https://doi.org/10.1039/c4em00394b

34. Guerrero-Latorre L, Romero B, Bonifaz E, et al. Quito’s virome: Metagenomic analysis of viral diversity in urban streams of Ecuador’s capital city. Sci Total Environ. 2018; 645:1334–1343. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.213

35. Rusiñol M, Fernandez-Cassi X, Hundesa A, et al. Application of human and animal viral microbial source tracking tools in fresh and marine waters from five different geographical areas. Water Res. 2014; 59:119-129. DOI: https://doi.org/10.1016/j.watres.2014.04.013

36. Ministerio del Ambiente de Ecuador. 097-A Refórmese el Texto Unificado de Legislación Secundaria. Registro Oficial. Año III - No 387. Quito, miércoles 4 de noviembre de 2015; 78:6. (In Spanish).

37. Rios-Touma B, Acosta R, Prat N. The Andean Biotic Index (ABI): revised tolerance to pollution values for macroinvertebrate families and index performance evaluation. Rev Biol Trop. 2014; 62(Suppl 2):249–273. DOI: https://doi.org/10.15517/rbt.v62i0.15791

38. Randazzo W, Cuevas-Ferrando E, Sanjuán R, et al. Metropolitan wastewater analysis for COVID-19 epidemiological surveillance. Int J Hyg Environ Health. 2020; 230:113621. DOI: https://doi.org/10.1016/j.ijheh.2020.113621

39. COVID-19 situation in the WHO European Region. Available at: https://who.maps.arcgis.com/apps/opsdashboard/index.html#/a19d5d1f86ee4d99b013eed5f637232d Accessed: 1 Sept 2020.

40. Mizumoto K, Kagaya K, Zarebski A, et al. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020; 25(10):2000180. DOI: https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180

41. Kimball A, Hatfield KM, Arons M, et al. Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility – King County, Washington, March 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(13):377–381. DOI: https://doi.org/10.15585/mmwr.mm6913e1

42. Bivins A, North D, Ahmad A, et al. Wastewater-based epidemiology: Global collaborative to maximize contributions in the fight against COVID-19. Environ Sci Technol. 2020; 54(13):7754-7757. DOI: https://doi.org/10.1021/acs.est.0c02388

43. Franklin AB, Bevins SN. Spillover of SARS-CoV-2 into novel wild hosts in North America: A conceptual model for perpetuation of the pathogen. Sci Total Environ. 2020; 733:139358. DOI: https://doi.org/10.1016/j.scitotenv.2020.139358

44. Medema G, Heijnen L, Elsinga G, et al. Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environ Sci Technol Lett. 2020: acs.estlett.0c00357. DOI: https://doi.org/10.1021/acs.estlett.0c00357

45. Ahmed W, Angel N, Edson J, et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci Total Environ. 2020; 728:138764. DOI: https://doi.org/10.1016/j.scitotenv.2020.138764

46. La Rosa G, Iaconelli M, Mancini P, et al. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci Total Environ. 2020; 736:139652. DOI: https://doi.org/10.1016/j.scitotenv.2020.139652

47. Tibbetts J. Combined sewer systems: down, dirty, and out of date. Environ Health Perspect. 2005; 113(7):A464–467. DOI: https://doi.org/10.1289/ehp.113-a464

48. de Man H, van den Berg HHJL, Leenen EJTM, et al. Quantitative assessment of infection risk from exposure to waterborne pathogens in urban floodwater. Water Res. 2014; 48:90–99. DOI: https://doi.org/10.1016/j.watres.2013.09.022

49. Banks D, Karnachuk OV, Parnachev VP, et al. Groundwater contamination from rural pit latrines: examples from Siberia and Kosova. Water Environ J. 2007; 16(2):147–152. DOI: https://doi.org/10.1111/j.1747-6593.2002.tb00386.x

50. Minimum standards in water supply, sanitation and hygiene promotion. In: The Sphere Project. Humanitarian Charter and minimum standards in humanitarian response. Rugby, UK: Practical Action Publishing, 2011. Pp. 79–138. Available at: https://www.unhcr.org/uk/50b491b09.pdf. Accessed: 1 Sept 2020.

51. Masclaux FG, Hotz P, Gashi D, et al. Assessment of airborne virus contamination in wastewater treatment plants. Environ Res. 2014; 133:260–265. DOI: https://doi.org/10.1016/j.envres.2014.06.002

52. Wigginton KR, Ye Y, Ellenberg RM. Emerging investigators series: the source and fate of pandemic viruses in the urban water cycle. Environ Sci Water Res Technol. 2015; 1(6):735–746. DOI: https://doi.org/10.1039/C5EW00125K

53. Yu ITS, Qiu H, Tse LA, et al. Severe acute respiratory syndrome beyond Amoy Gardens: completing the incomplete legacy. Clin Infect Dis. 2014; 58(5):683–686. DOI: https://doi.org/10.1093/cid/cit797

54. Regan H, CNN. How can the coronavirus spread through bathroom pipes? Experts are investigating in Hong Kong. February 12, 2020. Available at: https://edition.cnn.com/2020/02/12/asia/hong-kong-coronavirus-pipes-intl-hnk/index.html. Accessed: 1 Sept 2020.

55. Press Trust of India. INDIA TODAY. Kapashera hot spot: No space for social-distancing in cramped rooms, common toilets. New Delhi. May 3, 2020. Available at: https://www.indiatoday.in/india/story/kapashera-hot-spot-no-space-for-social-distancing-in-cramped-rooms-common-toilets-1673968-2020-05-03. Accessed: 1 Sept 2020.


Review

For citations:


Zhuravlev P.V., Kalyuzhin A.S., Kulak M.A., Aleksanina N.V., Gapon M.N., Tverdokhlebova T.I. Survival Ability of the COVID-19 Causative Agent in Aquatic Environment: A Literature Review. Public Health and Life Environment – PH&LE. 2021;(3):84-90. (In Russ.) https://doi.org/10.35627/2219-5238/2021-336-3-84-90

Views: 453


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-5238 (Print)
ISSN 2619-0788 (Online)