Seawater-Induced Vegetative to Dormant Phenotype Transformation of Salmonella Enteritidis
https://doi.org/10.35627/27/2219-5238/2025-33-10-74-83
Abstract
Introduction: Under the influence of sublethal stress, non-spore-forming bacteria (including Salmonella spp.) are able to form dormant cellular phenotypes that do not grow on traditional differential diagnostic media.
Objective: To study the possibility of Salmonella Enteritidis changing the phenotype from vegetative to dormant upon seawater exposure.
Materials and Methods: Salmonella Enteritidis / food / Primorsky_krai_Artyem / S-28390 / 2024 (38.0 : 1.4) strain (VGARus ID prim001916) was incubated for 40 days in parallel in sterile saline solution and sterilized seawater to establish the possibility of transforming the vegetative phenotype into a dormant one. The reversal of the dormant phenotype to the vegetative one was carried out by alimentary infestation of laboratory mice previously verified for the absence of Salmonella infection. In addition to standard bacteriological methods, we used plasmidomic analysis, real-time polymerase chain reaction for DNA detection of Salmonella, and genome-wide next-generation sequencing (NGS).
Results: We found that long-term incubation in seawater triggered the mechanism of transformation of the vegetative phenotype of S. Enteritidis into a dormant one. Similar incubation of S. Enteritidis but in saline solution did not cause such a transformation, bacterial cells naturally died in the absence of nutrients, but the remaining viable cells did not become dormant. Reversion to the vegetative phenotype occurred after passage of the dormant form in orally inoculated laboratory mice. The identity of the genomes of the strains in the dormant state used for alimentary infestation of the mice and in the vegetative state obtained after passage was confirmed by a 99.8 % NGS contig match.
Conclusions: As an abiotic factor, sterilized seawater can trigger the mechanism of S. Enteritidis vegetative to dormant phenotype transformation. This requires detailing of hygienic requirements for recreational areas of seacoasts in terms of developing methods for detection of pathogenic bacteria with a dormant phenotype.
Keywords
About the Authors
M. P. ByninaRussian Federation
Marina P. Bynina, Junior Researcher, Laboratory of Intestinal Infections
1 Selskaya Street, Vladivostok, 690087
A. A. Yakovlev
Russian Federation
Anatoly A. Yakovlev, Dr. Sci. (Med.), Professor, Head of the Laboratory of Intestinal Infections, Professor, Department of Epidemiology and Military Epidemiology
1 Selskaya Street, Vladivostok, 690087
2 Ostryakov Avenue, Vladivostok, 690002
I. D. Makarenkova
Russian Federation
Ilona D. Makarenkova, Dr. Sci. (Med.), Professor, Leading Researcher, Laboratory of Intestinal Infections
1 Selskaya Street, Vladivostok, 690087
A. S. Solovyeva
Russian Federation
Alina S. Solovyeva, Junior Researcher, Laboratory of Intestinal Infections
1 Selskaya Street, Vladivostok, 690087
J. N. Pokazeeva
Russian Federation
Julia N. Pokazeeva, Assistant, Department of Normal and Pathological Physiology, Laboratory of Intestinal Infections
1 Selskaya Street, Vladivostok, 690087
2 Ostryakov Avenue, Vladivostok, 690002
M. F. Trofimova
Russian Federation
Maria F. Trofimova, Junior Researcher, Bioinformatics Group
1 Selskaya Street, Vladivostok, 690087
V. A. Lubova
Russian Federation
Valeria A. Lubova, Researcher, Laboratory of Natural Focal Viral Infections
1 Selskaya Street, Vladivostok, 690087
A. A. Belik
Russian Federation
Alexey A. Belik, Cand. Sci. (Biol.), Researcher, Bioinformatics Group
1 Selskaya Street, Vladivostok, 690087
I. A. Belov
Russian Federation
Iurii A. Belov, Head, Center for Molecular Diagnostics, Assistant, Department of Epidemiology, Microbiology and Parasitology
1 Selskaya Street, Vladivostok, 690087
10 Ajax Bay, Russky Island, Vladivostok, 690922
T. S. Zaporozhets
Russian Federation
Tatyana S. Zaporozhets, Dr. Sci. (Med.), Prof.; Chief Researcher, Laboratory of Respiratory Infections
1 Selskaya Street, Vladivostok, 690087
S. P. Kryzhanovsky
Russian Federation
Sergey P. Kryzhanovsky, Dr. Sci. (Med.), Corresponding Member of the Russian Academy of Sciences
95 Kirov Street, Vladivostok, 690022
M. Yu. Shchelkanov
Russian Federation
Sergey P. Kryzhanovsky, Dr. Sci. (Med.), Corresponding Member of the Russian Academy of Sciences
1 Selskaya Street, Vladivostok, 690087
10 Ajax Bay, Russky Island, Vladivostok, 690922
References
1. Yakovlev AA. [Marine Epidemiology.] Vladivostok: Meditsina DV Publ.; 2004. (In Russ.)
2. Khotimchenko YuS, Shchelkanov MYu. Viruses of the ocean: On the shores of the aqua incognita. Horizons of taxonomic diversity. Russ J Mar Biol. 2024;50(1):1-24. doi: 10.1134/S106307402401005X
3. Shchelkanov MYu, Katin IO, Burukhina EG, et al. Seal louse (Echinophthiriidae) as vectors of invasive and infectious disease agents of pinnipeds. Yug Rossii: Ekologiya, Razvitie. 2017;12(3):20-32. (In Russ.) doi: 10.18470/1992-1098-2017-3-20-32
4. Shchelkanov MYu, Aristova VA, Chumakov VM, Lvov DK. [Historiography of the term “natural focus”.] In: [Emerging and Re-emerging Infections in the Biosecurity System of the Russian Federation: Collection of Articles.] Moscow: Sechenov First MSMU Publ.; 2014:21-32. (In Russ.)
5. Hubálek Z, Rudolf I. Microbial Zoonoses and Sapronoses. Luxembourg: Springer; 2011. doi: 10.1007/978-90-481-9657-9
6. Somov GP, Buzoleva LS. [Adaptation of Pathogenic Bacteria to Abiotic Environmental Factors.] Vladivostok: Poligrafkombinat Publ.; 2004. (In Russ.)
7. Andryukov BG, Kryzhanovsky SP, Besednova NN. [Molecular Basis of Specific Adaptation Mechanisms of Pathogenic Bacteria.] Vladivostok: Dalnauka Publ.; 2021. (In Russ.)
8. Zaporozhets TS, Besednova NN, Kalinin AV, Somova LM, Shchelkanov MYu. 80 years on guard of biological safety at the eastern borders of Russia. Zdorov’e Naseleniya i Sreda Obitaniya. 2021;(5(338)):5-15. (In Russ.) doi: 10.35627/2219-5238/2021-338-5-5-15
9. Somova LM, Drobot EI, Lyapun IN, Pustovalov EV, Matosova EV, Shchelkanov MYu. Ultrastructure and morphological variability of non-culturable forms of Yersinia pseudotuberculosis bacteria. Bull Exp Biol Med. 2022;172(6):725-728. doi: 10.1007/s10517-022-05465-8
10. Matosova EV, Bynina MP, Lyapun IN, Shchelkanov MYu. [Application of an experimental dynamic model for studying bacterial biofilm formation in seawater.] Uspekhi Meditsinskoy Mikologii. 2023;25:396-400. (In Russ.)
11. Matosova EV, Besednova NN, Kusaykin MI, et al. Antibiofilm activity of fucoidans from brown algae. Antibiotiki i Khimioterapiya. 2023;68(9-10):5-11. (In Russ.) doi: 10.37489/0235-2990-2023-68-9-10-5-11
12. Eskova AI, Yakovlev AA, Obukhova VS, Bynina MP, Kim AV, Shchelkanov MYu. Interspecies interaction of bacteria Listeria monocytogenes, Yersinia pseudotuberculosis, and marine saprotrophs during long-term culturing in biofilms. Bull Exp Biol Med. 2024;177(2):252-255. doi: 10.1007/s10517-024-06167-z
13. Es’kova AI, Yakovlev AA, Obukhova VS, Fateeva LN, Shchelkanov MYu. [The ability of marine bacteria isolated from coastal waters of the Sea of Japan to form monoand polycultural biofilms with sapronotic microorganisms Listeria monocytogenes.] Certificate of state registration of the database No. 2024623560 with priority dated August 1, 2024; date of state registration in the Database Registry: August 14, 2024. (In Russ.)
14. Labinskaya AS, Blinkova LP, Eshchina AS. [General and Sanitary Microbiology with Microbiological Research Techniques.] St. Petersburg: Lan’ Publ.; 2016. (In Russ.)
15. Fadeykina OV, Kasina IV, Ermolaeva TN, et al. The problems of assessing the total concentration of microbial cells with the use of branch standard sample of bacterial suspensions. Mezhdunarodnyy Zhurnal Prikladnykh i Fundamental’nykh Issledovaniy. 2016;(11-2):268-273. (In Russ.)
16. Egorova SA, Kuleshov KV, Kaftyreva LA. Modern Salmonella subtyping methods in outbreak investigations. Immunopatologiya, Allergologiya, Infektologiya. 2019;(3):36-42. (In Russ.) doi: 10.14427/jipai.2019.3.33
17. Adams RLP. Cell Culture for Biochemists. Moscow: Mir Publ.; 1983. (In Russ.)
18. Kado CI, Liu ST. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981;145(3):1365-1373. doi: 10.1128/jb.145.3.1365-1373.1981
19. Hernández-Salmerón JE, Moreno-Hagelsieb G. FastANI, Mash and Dashing equally differentiate between Klebsiella species. PeerJ. 2022;10:e13784. doi: 10.7717/peerj.13784
20. Kopaladze RA. [Working with laboratory animals in the context of bioethics: History, modernity, prospects.] Uspekhi Fiziologicheskikh Nauk. 2004;35(2):92-109. (In Russ.)
21. Shchelkanov MYu, Yarygina MV, Galkina IV, Kiku PF. The dialectic approach to biomedical ethics as a foundation of its implementation in actual social cultural conditions. Problemy Sotsial’noy Gigieny, Zdravookhraneniya i Istorii Meditsiny. 2019;27(4):414-417. (In Russ.) doi: 10.32687/0869-866X-2019-27-4-414-417
22. Rittershaus ESC, Baek SH, Sassetti CM. The normalcy of dormancy: Common themes in microbial quiescence. Cell Host Microbe. 2013;13(6):643-651. doi: 10.1016/j.chom.2013.05.012
23. Gollan B, Grabe G, Michaux C, Helaine S. Bacterial persisters and infection: Past, present, and progressing. Annu Rev Microbiol. 2019;73:359-385. doi: 10.1146/annurev-micro-020518-115650
24. Zheng EJ, Valeri JA, Andrews IW, et al. Discovery of antibiotics that selectively kill metabolically dormant bacteria. Cell Chem Biol. 2024;31(4):712.e9-728.e9. doi: 10.1016/j.chembiol.2023.10.026
25. Vavilin VA, Shchelkanov MYu, Lokshina LYa. The effect of fatty acid diffusion in leachate on the propagation of concentration waves in the process of municipal solid waste decomposition. Water Res. 2001;28(6):691-697. doi: 10.1023/A:1012898132074
26. Vavilin VA, Schelkanov MYu, Lokshina LYa, et al. A comparative analysis of a balance between the rates of polymer hydrolysis and acetoclastic methanogenesis during anaerobic digestion of solid waste. Water Sci Technol. 2002;45(10):249-254. doi: 10.2166/wst.2002.0345
27. Romankevich EL. [Living matter of the Earth (Biogeochemical aspects of the problem).] Geokhimiya. 1988;(2):292-306. (In Russ)
28. Saenko GN. [Metals and Halogens in Marine Organisms.] Moscow: Nauka Publ.; 1992. (In Russ.)
29. Kuznetsova TA, Zaporozhets TS, Ermakova SP, Kryzhanov sky SP, Besednova NN, Shchelkanov MYu. [Adjuvants Based on Polysaccharides from Pacific Hydrobionts.] Avdeeva ZhI, ed. Vladivostok: Dalnauka Publ.; 2023. (In Russ.)
30. Kim IN, Kushniruk AA. [Toxins of hydrobionts.] Ekologicheskaya Ekspertiza. 2010;(2):2-64. (In Russ.)
31. Goubanov EP. Toxic and dangerous aquatic organisms. Trudy VNIRO. 2015;156:91-105. (In Russ.)
32. Stonik IV, Popov RS, Tsurpalo AP, Dmitrenok PS, Shchelkanov MYu, Orlova TYu. Domoic acid in cultures of the diatom genus Pseudo-nitzschia H. Peragallo in H. Peragallo & M. Peragallo, 1900 and in bivalve samples from the Russian waters of the Sea of Japan and the Pacific waters of Kamchatka. Russ J Mar Biol. 2023;49(5):355-360. doi: 10.1134/S1063074023050115
33. Barer MR. Viable but non-culturable and dormant bacteria: Time to resolve an oxymoron and a misnomer? J Med Microbiol. 1997;46(8):629-631. doi: 10.1099/00222615-46-8-629
34. Darcan C, Ozkanca R, Idil O, Flint KP. Viable but non-culturable state (VBNC) of Escherichia coli related to EnvZ under the effect of pH, starvation and osmotic stress in sea water. Pol J Microbiol. 2009;58(4):307-317.
35. Dewailly E, Furgal C, Knap A, et al. Indicators of ocean and human health. Can J Public Health. 2002;93(Suppl 1): S34-S38. doi: 10.1007/BF03405116
36. Glöckner FO, Joint I. Marine microbial genomics in Europe: Current status and perspectives. Microb Biotechnol. 2010;3(5):523-530. doi: 10.1111/j.1751-7915.2010.00169.x
Supplementary files
Review
For citations:
Bynina M.P., Yakovlev A.A., Makarenkova I.D., Solovyeva A.S., Pokazeeva J.N., Trofimova M.F., Lubova V.A., Belik A.A., Belov I.A., Zaporozhets T.S., Kryzhanovsky S.P., Shchelkanov M.Yu. Seawater-Induced Vegetative to Dormant Phenotype Transformation of Salmonella Enteritidis. Public Health and Life Environment – PH&LE. 2025;33(10):74-83. (In Russ.) https://doi.org/10.35627/27/2219-5238/2025-33-10-74-83

.png)

























