Preview

Public Health and Life Environment – PH&LE

Advanced search

The role of Leuconostoc mesenteroides species of lactic acid bacteria in fermenting vegetables

https://doi.org/10.35627/2219-5238/2020-328-7-30-36

Abstract

Introduction: Fermentation is a biotechnological process of preserving the biological potential of raw materials and transforming them in order to impart new organoleptic properties and to increase nutritional value of the product allowing diversification of daily meals; thus, in some countries fermented products make up a significant part of the human diet. Despite the fact that fermented products are very useful for humans, the fermentation process itself remained rather complicated for reproduction during a long time. Currently, starter cultures are used in industrial production of fermented food products enabling the production of foodstuffs with a guaranteed range of consumer properties. Such species of lactic acid bacteria as Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus, and Weissella play the main role in production of fermented food and drinks while L. mesenteroides plays the primary role in starting fermentation of many types of plant materials including cabbage, beet, turnip, cauliflower, green beans, chopped green tomatoes, cucumbers, olives, etc. Objective: To control and manage the industrial fermentation process, it is important to determine the main processes occurring at different stages and the types of lactic acid microorganisms responsible for initiation, continuation and completion of the process. Results: This review shows that, despite the variety of fermentable vegetables, L. mesenteroides species of lactic acid bacteria are of particular importance at the primary heteroenzymatic stage since during this very period the processed raw materials form conditions for inhibiting pathogenic and facultative pathogenic microflora and create optimal environment for subsequent development of targeted microorganisms determining the quality of finished products. Conclusions: When developing food technology, L. mesenteroides species of lactic acid bacteria must be an indispensable component of industrial starter cultures for obtaining final products of consistently high quality.

About the Authors

Natalia E. Posokina
Russian Research Institute of Canning Technology, Branch of the Gorbatov Federal Research Center for Food Systems at the Russian Academy of Sciences
Russian Federation


A. I. Zakharova
Russian Research Institute of Canning Technology, Branch of the Gorbatov Federal Research Center for Food Systems at the Russian Academy of Sciences
Russian Federation


References

1. Lee CH. Food biotechnology. In: Campbell-Platt G, editor. Food science and technology. West Sussex, United Kingdom: Wiley-Blackwell Publishing Ltd; 2009. P. 85-114.

2. Tamang JP, Samuel D. Dietary cultures and antiquity of fermented foods and beverages. In: Tamang JP, Kailasapathy K, editors. Fermented foods and beverages of the world. Boca Raton: CRC Press; 2010. P. 1-40. DOI: https://doi.org/10.1201/EBK1420094954

3. Kwon DY, Tamang JP. Religious ethnic foods. J Ethn Foods. 2015; 2(2):45-46. DOI: https://doi.org/10.1016/j. jef.2015.05.001

4. Breidt F, McFeeters RF, Perez-Diaz I, et al. Fermented vegetables. In: Doyle MP, Buchanan RL, editors. Food microbiology: fundamentals and frontiers, 4th edition. Washington: ASM Press; 2013. P. 841-855. DOI: http:// dx.doi.org/10.1128/9781555818463

5. Medina-Pradas E, Perez-Diaz IM, Garrido-Fernandez A, et al. Review of vegetable fermentations with particular emphasis on processing modifications, microbial ecology, and spoilage. In: Bevilacqua A, Corbo MR, Sinigaglia M, editors. The microbiological quality of food: foodborne spoilers. Sawston: Woodhead Publishing; 2017. P. 211236. DOI: https://doi.org/10.1016/B978-0-08-100502-6.00012-1

6. Yarullina DR, Fakhrullin RF. Bacteria of the Lactobacillus species: general characteristics and methods of working with them (a study guide). Kazan: Kazan Federal University Publ.; 2014. 51 p. (In Russian).

7. Rolle R, Satin M. Basic requirements for the transfer of fermentation technologies to developing countries. Int J Food Microbiol. 2002; 75(3):181-187. DOI: https:// doi.org/10.1016/S0168-1605(01)00705-X

8. Alvarez-Sieiro P, Montalban-Lopez M, Mu D, et al. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biot. 2016; 100(7):2939-2951. DOI: https://doi.org/10.1007/s00253-016-7343-9

9. Sauer M, Russmayer H, Grabherr R, et al. The efficient clade: lactic acid bacteria for industrial chemical production. Trends Biotechnol. 2017; 35(8):756-769. DOI: https://doi.org/10.1016Zj.tibtech.2017.05.002

10. Thierry A, Pogacic T, Weber M, et al. Production of flavor compounds by lactic acid bacteria in fermented foods. In: Mozzi F, Raya RR, Vignolo GM, editors. Biotechnology of lactic acid bacteria: novel applications, 2nd edition. Ames, IA, USA: Wiley-Blackwell; 2015. P. 314-340. DOI: https://doi.org/10.1002/9781118868386. ch19

11. Rodgers S. Novel applications of live bacteria in food services: probiotics and protective cultures. Trends Food Sci Tech. 2008; 19(4):188-197. DOI: https://doi. org/10.1016/j.tifs.2007.11.007

12. Liu SN, Han Y, Zhou ZJ. Lactic acid bacteria in traditional fermented Chinese foods. Food Res Int. 2011; 44(3):643-651. DOI: https://doi.org/10.1016/j. foodres.2010.12.034

13. Salmeron I, Thomas K, Pandiella SS. Effect of substrate composition and inoculum on the fermentation kinetics and flavour compound profiles of potentially nondairy probiotic formulations. LWT-Food Sci Technol. 2014; 55(1):240-247. DOI: https://doi.org/10.1016/j. lwt.2013.07.008

14. Swain MR, Anandharaj M, Ray RC, et al. Fermented fruits and vegetables of Asia: a potential source of probiotics. Biotechnol Res Int. 2014; article ID 250424, 19 p. DOI: https://doi.org/10.1155/2014/250424

15. Azam M, Mohsin M, Ijaz H, et al. Review - Lactic acid bacteria in traditional fermented Asian foods. Pak J Pharm Sci. 2017; 30(5):1803-1814.

16. Ong YY, Tan WS, Rosfarizan M, et al. Isolation and identification of lactic acid bacteria from fermented red dragon fruit juices. J Food Sci. 2012; 77(10):M560-M564. DOI: https://doi.org/10.1111/j.1750-3841.2012.02894.x

17. Yang X, Hu W, Xiu Z, et al. Microbial dynamics and volatilome profiles during the fermentation of Chinese northeast sauerkraut by Leuconostoc mesenteroides ORC 2 and Lactobacillus plantarum HBUAS 51041 under different salt concentrations. Food Res Int. 2020; 130:108926. DOI: https://doi.org/10.1016/j.foodres.2019.108926

18. Rhee SJ, Lee JE, Lee CH. Importance of lactic acid bacteria in Asian fermented foods. Microbial Cell Factories. 2011; 10(Suppl 1):S5. DOI: https://doi. org/10.1186/1475-2859-10-S1-S5

19. Fadhil R, Hayati R, Agustina R. Quality characteristics of sauerkraut from cabbage (Brassica oleracea) during fermentation and variation of salt concentration. International Journal of Scientific & Technology Research. 2019; 8(10):2906-2909.

20. Muller A, Rosch N, Cho GS, et al. Influence of iodized table salt on fermentation characteristics and bacterial diversity during sauerkraut fermentation. Food Microbiol. 2018; 76:473-480. DOI: https://doi.org/10.1016/]. fm.2018.07.009

21. Plengvidhya V. Microbial ecology of sauerkraut fermentation and genome analysis of lactic acid bacterium Leuconostoc mesenteroides ATCC 8293. DPhil Thesis. Raleigh, N.C.: North Carolina State Univ.; 2003.

22. Varzakas T, Zakynthinos G, Proestos C, et al. Fermented vegetables. In: Yildiz F, Wiley R, editors. Minimally processed refrigerated fruits and vegetables. Food Engineering Series. Boston, MA: Springer; 2017. P. 537-584. DOI: https://doi.org/10.1007/978-1-4939-7018-6_15

23. Roberts JS, Kidd dR. Lactic acid fermentation of onions. LWT-Food Sci Technol. 2005; 38(2):185-190. DOI: https://doi.org/10.1016/j.lwt.2004.05.007

24. Di Cagno R, Surico RF, Siragusa S, et al. Selection and use of autochthonous mixed starter for lactic acid fermentation of carrots, French beans or marrows. Int J Food Microbiol. 2008; 127(3):220-228. DOI: https:// doi.org/10.1016/j.ijfoodmicro.2008.07.010

25. Le Kim YK, Koh E, Chung HJ, et al. Determination of ethyl carbamate in some fermented Korean foods and beverages. Food Addit Contam. 2000; 17(6):469-475. DOI: https://doi.org/10.1080/02652030050034055

26. Hong SI, Kim YJ, Pyun YR. Acid tolerance of Lactobacillus plantarum from kimchi. LWT-Food Sci Technol. 1999; 32(3):142-148. DOI: https://doi.org/10.1006/fstl.1998.0517

27. Nam YD, Chang HW, Kim KH, et al. Metatranscriptome analysis of lactic acid bacteria during kimchi fermentation with genome-probing microarrays. Int J Food Microbiol. 2009; 130(2):140-146. DOI: https://doi.org/10.1016/j. ijfoodmicro.2009.01.007

28. Choi YJ, Yong S, Lee MJ, et al. Changes in volatile and non-volatile compounds of model kimchi through fermentation by lactic acid bacteria. LWT-Food Sci Technol. 2019; 105:118-126. DOI: https://doi.org/10.1016/j. lwt.2019.02.001

29. Kim M, Chun J. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int J Food Microbiol. 2005; 103(1):91-96. DOI: https://doi.org/10.1016/j. ijfoodmicro.2004.11.030

30. Jung JY, Lee SH, Kim JM, et al. Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl Environ Microbiol. 2011; 77(7):2264-2274. DOI: https:// doi.org/10.1128/AEM.02157-10

31. Jung JY, Lee SH, Lee SH, et al. Complete genome sequence of Leuconostoc mesenteroides subsp. mesenteroides strain J18, isolated from kimchi. J Bacteriol. 2012; 194(3):730-731. DOI: https://doi.org/10.1128/JB.06498-11

32. Wiander B, Korhonen HJT. Preliminary studies on using LAB strains isolated from spontaneous sauerkraut fermentation in combination with mineral salt, herbs and spices in sauerkraut and sauerkraut juice fermentations. Agr Food Sci. 2011; 20(2):176-182. DOI: https://doi. org/10.2137/145960611797215682

33. Dimic GR. Characteristics of the Leuconostoc mesenteroides subsp. mesenteroides strains from fresh vegetables. APTEFF. 2006; 37:3-11. DOI: https://doi.org/10.2298/APT0637003D

34. Paramithiotis S, Hondrodimou OL, Drosinos EH. Development of the microbial community during spontaneous cauliflower fermentation. Food Res Int. 2010; 43(4):1098-1103. DOI: https://doi.org/10.1016/j. foodres.2010.01.023

35. Di Cagno R, Coda R, De Angelis M, et al. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 2013; 33(1):1-10. DOI: https://doi. org/10.1016/j.fm.2012.09.003

36. Paramithiotis S, Kouretas K, Drosinos EH. Effect of ripening stage on the development of the microbial community during spontaneous fermentation of green tomatoes. J Sci Food Agric. 2013; 94(8):1600-1606. DOI: https://doi.org/10.1002/jsfa.6464

37. Lactic acid fermentation of fruits and vegetables. In: Paramithiotis S, editor. Lactic acid fermentation of fruits and vegetables. Boca Raton: CRC Press; 2017. P. 1-17. DOI: https://doi.org/10.1201/9781315370378


Review

For citations:


Posokina N.E., Zakharova A.I. The role of Leuconostoc mesenteroides species of lactic acid bacteria in fermenting vegetables. Public Health and Life Environment – PH&LE. 2020;(7):30-36. (In Russ.) https://doi.org/10.35627/2219-5238/2020-328-7-30-36

Views: 867


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-5238 (Print)
ISSN 2619-0788 (Online)