

Phenotypic and Genomic Profile of Foodborne Antimicrobial Resistant Staphylococcus aureus Isolated in the Republic of Tajikistan
https://doi.org/10.35627/2219-5238/2025-33-3-33-40
Abstract
Introduction: Staphylococcus aureus is a significant infectious agent causing food poisoning. High adaptability and the ability to produce heat-stable enterotoxins make it a dangerous pathogen of public health concern. Monitoring antibiotic resistance and assessing the risk of food contamination by this microorganism are critical to prevent and treat foodborne toxic infections.
Objective: To assess phenotypic and genotypic antibiotic resistance of S. aureus strains isolated from food products on the territory of the Republic of Tajikistan.
Materials and methods: The study included 50 isolates of S. aureus derived from foods in the Republic of Tajikistan in 2018–2022. Species identification was performed by MALDI-TOF MS. Phenotypic susceptibility to antimicrobial agents was determined by the minimum inhibition concentration method using the Sensititre system. Genetic determinants of resistance and virulence were determined by analyzing data from full-genome sequencing using Illumina NextSeq 2000 system.
Results: 44.0 % (22/50) of S. aureus isolates were resistant to at least one antimicrobial drug, of which 34.0 % (17/50) were multidrug resistant. S. aureus with phenotypic and genotypic resistance to beta-lactams were the most common (40.0 %): blaZ resistance genes were detected in 94.0 % (16/17) and mecA in 76.4 % (13/17). The analysis of multilocus sequence typing results revealed 4 different S. aureus sequencing types with ST5 prevailing. A high frequency of virulence genes, including enterotoxins and leukocidins, was also observed.
Conclusion: Food contamination with S. aureus poses a significant threat to public health. High antibiotic resistance of the foodborne microorganisms and the presence of multiple virulence genes highlight the need for continuous monitoring and development of strategies to manage the risks associated with the spread of antibiotic resistance through the food chain.
About the Authors
L. A. BityuminaRussian Federation
Lyutsiya A. Bityumina, Junior Researcher, Research Group for Antimicrobial Resistance of Food Pathogens
3A Novogireyevskaya Street, Moscow, 111123
N. G. Kulikova
Russian Federation
Nina G. Kulikova, Cand. Sci. (Biol.), Head of the Research Group for Antimicrobial Resistance of Food Pathogens
3A Novogireyevskaya Street, Moscow, 111123
Yu. V. Mikhaylova
Russian Federation
Yulia V. Mikhaylova, Cand. Sci. (Biol.), Head of the Laboratory of Molecular Mechanisms of Antibiotic Resistance
3A Novogireyevskaya Street, Moscow, 111123
M. U. Кayumova
Tajikistan
Markhabo U. Кayumova, Cand. Sci. (Biol.), Head of Bacteriological Laboratory
61 Shevchenko Street, Dushanbe, 734025
M. M. Ruziev
Tajikistan
Murodali M. Ruziev, Dr. Sci. (Med.), Director
61 Shevchenko Street, Dushanbe, 734025
A. A. Shelenkov
Russian Federation
Andrey A. Shelenkov, Cand. Sci. (Phys. & Maths.), Senior Researcher, Laboratory of Molecular Mechanisms of Antibiotic Resistance
3A Novogireyevskaya Street, Moscow, 111123
A. E. Karpenko
Russian Federation
Anna E. Karpenko, Researcher, Laboratory of Molecular Mechanisms of Antibiotic Resistance
3A Novogireyevskaya Street, Moscow, 111123
D. K. Kondrateva
Russian Federation
Daria K. Kondrateva, Junior Researcher, Laboratory of Molecular Mechanisms of Antibiotic Resistance
3A Novogireyevskaya Street, Moscow, 111123
I. N. Manzeniuk
Russian Federation
Igor N. Manzeniuk, Cand. Sci. (Med.), Assistant Director for Research
3A Novogireyevskaya Street, Moscow, 111123
V. G. Akimkin
Russian Federation
Vasiliy G. Akimkin, Dr. Sci. (Med.), Prof., Academician of the Russian Academy of Sciences, Director
3A Novogireyevskaya Street, Moscow, 111123
References
1. Silva-de-Jesus AC, Ferrari RG, Panzenhagen P, Conte-Junior CA. Staphylococcus aureus biofilm: The role in disseminating antimicrobial resistance over the meat chain. Microbiology (Reading). 2022;168(10). doi: 10.1099/mic.0.001245
2. Piewngam P, Otto M. Staphylococcus aureus colonisation and strategies for decolonisation. Lancet Microbe. 2024;5(6):e606-e618. doi: 10.1016/S2666-5247(24)00040-5
3. Ou Q, Zhou J, Lin D, et al. A large meta-analysis of the global prevalence rates of S. aureus and MRSA contamination of milk. Crit Rev Food Sci Nutr. 2018;58(13):2213-2228. doi: 10.1080/10408398.2017.1308916
4. Resende JA, Fontes CO, Ferreira-Machado AB, Nascimento TC, Silva VL, Diniz CG. Antimicrobial-resistance genetic markers in potentially pathogenic gram positive cocci isolated from Brazilian soft cheese. J Food Sci. 2018;83(2):377-385. doi: 10.1111/1750-3841.14019
5. Diallo OO, Baron SA, Abat C, Colson P, Chaudet H, Rolain JM. Antibiotic resistance surveillance systems: A review. J Glob Antimicrob Resist. 2020;23:430-438. doi: 10.1016/j.jgar.2020.10.009
6. Skachkova TS, Zamyatin MN, Orlova OA, et al. Monitoring methicillin-resistant Staphylococcus strains in the Moscow medical and surgical center using molecular-biological methods. Epidemiologiya i Vaktsinoprofilaktika. 2021;20(1):44-50. (In Russ.) doi: 10.31631/2073-3046-2021-20-1-44-50
7. Lakhundi S, Zhang K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. 2018;31(4):e00020-18. doi: 10.1128/CMR.00020-18
8. Zhao G, Lou Z, Zhu Z, et al. Epidemiological and molecular evidence of foodborne poisoning outbreak caused by enterotoxin gene cluster-harboring Staphylococcus aureus of new sequence type 7591. Int J Infect Dis. 2023;135:132-135. doi: 10.1016/j.ijid.2023.08.005
9. Ramadan HA, El-Baz AM, Goda RM, El-Sokkary MMA, El-Morsi RM. Molecular characterization of enterotoxin genes in methicillin-resistant S. aureus isolated from food poisoning outbreaks in Egypt. J Health Popul Nutr. 2023;42(1):86. doi: 10.1186/s41043-023-00416-z
10. Titouche Y, Houali K, Ruiz-Ripa L, et al. Enterotoxin genes and antimicrobial resistance in Staphylococcus aureus isolated from food products in Algeria. J Appl Microbiol. 2020;129(4):1043-1052. doi: 10.1111/jam.14665
11. Bankevich A, Nurk S, Antipov D, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455-477. doi: 10.1089/cmb.2012.0021
12. Shelenkov A, Mikhaylova Y, Yanushevich Y, et al. Molecular typing, characterization of antimicrobial resistance, virulence profiling and analysis of whole-genome sequence of clinical Klebsiella pneumoniae isolates. Antibiotics (Basel). 2020;9(5):261. doi: 10.3390/antibiotics9050261
13. Szczuka E, Porada K, Wesołowska M, Łęska B. Occurrence and characteristics of Staphylococcus aureus isolated from dairy products. Molecules. 2022;27(14):4649. doi: 10.3390/molecules27144649
14. Jans C, Merz A, Johler S, et al. East and West African milk products are reservoirs for human and livestock-associated Staphylococcus aureus. Food Microbiol. 2017;65:64-73. doi: 10.1016/j.fm.2017.01.017
15. Gelbíčová T, Tegegne HA, Florianová M, Koláčková I, Karpíšková R. Properties of Staphylococcus aureus strains from food processing staff. Epidemiol Mikrobiol Imunol. 2018;67(4):161-165.
16. Zhang J, Wang J, Jin J, et al. Prevalence, antibiotic resistance, and enterotoxin genes of Staphylococcus aureus isolated from milk and dairy products worldwide: A systematic review and meta-analysis. Food Res Int. 2022;162(Pt A):111969. doi: 10.1016/j.foodres.2022.111969
17. Khairullah AR, Rehman S, Sudjarwo SA, et al. Detection of mecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and risk factors from farms in Probolinggo, Indonesia. F1000Res. 2022;11:722. doi: 10.12688/f1000research.122225.3
18. Badawy B, Elafify M, Farag AMM, et al. Ecological distribution of virulent multidrug-resistant Staphylococcus aureus in livestock, environment, and dairy products. Antibiotics (Basel). 2022;11(11):1651. doi: 10.3390/antibiotics11111651
19. Patel K, Godden SM, Royster EE, et al. Prevalence, antibiotic resistance, virulence and genetic diversity of Staphylococcus aureus isolated from bulk tank milk samples of U.S. dairy herds. BMC Genomics. 2021;22(1):367. doi: 10.1186/s12864-021-07603-4
20. Chang Y, Gao H, Zhu Z, et al. High prevalence and properties of enterotoxin-producing Staphylococcus aureus ST5 strains of food sources in China. Foodborne Pathog Dis. 2016;13(7):386-390. doi: 10.1089/fpd.2015.2085
21. Xiao N, Yang J, Duan N, Lu B, Wang L. Community-associated Staphylococcus aureus PVL+ ST22 predominates in skin and soft tissue infections in Beijing, China. Infect Drug Resist. 2019;12:2495-2503. doi: 10.2147/IDR.S212358
22. Li H, Tang T, Stegger M, Dalsgaard A, Liu T, Leisner JJ. Characterization of antimicrobial-resistant Staphylococcus aureus from retail foods in Beijing, China. Food Microbiol. 2021;93:103603. doi: 10.1016/j.fm.2020.103603
23. Chen T, Zhao L, Liu Y, et al. Mechanisms of high-level fosfomycin resistance in Staphylococcus aureus epidemic lineage ST5. J Antimicrob Chemother. 2022;77(10):2816-2826. doi: 10.1093/jac/dkac236
24. Mikhaylova Y, Shelenkov A, Chernyshkov A, et al. Whole-genome analysis of Staphylococcus aureus isolates from ready-to-eat food in Russia. Foods. 2022;11(17):2574. doi: 10.3390/foods11172574
Supplementary files
Review
For citations:
Bityumina L.A., Kulikova N.G., Mikhaylova Yu.V., Кayumova M.U., Ruziev M.M., Shelenkov A.A., Karpenko A.E., Kondrateva D.K., Manzeniuk I.N., Akimkin V.G. Phenotypic and Genomic Profile of Foodborne Antimicrobial Resistant Staphylococcus aureus Isolated in the Republic of Tajikistan. Public Health and Life Environment – PH&LE. 2025;33(3):33-40. (In Russ.) https://doi.org/10.35627/2219-5238/2025-33-3-33-40