Preview

Public Health and Life Environment – PH&LE

Advanced search

Creation of Databases for Systematization of Antibiotic Resistance Monitoring Results

https://doi.org/10.35627/2219-5238/2020-325-4-59-63

Abstract

The study of the composition and antibiotic resistance of bacterial communities of water bodies requires effective processing of numerous data. Our objective was to systematize studies of sensitivity/resistance of pathogenic and opportunistic microorganisms in water reservoirs of Rostov-on-Don and the Rostov Region conducted by the Rostov-on-Don Anti-Plague Research Institute and to create databases (DB) including epidemiological information on the date and source of an isolate, results of bacterial strain identification, and evaluation of their sensitivity/ resistance to antibacterial preparations (ABP). Materials and methods: Isolation, identification and interpretation of results of determining sensitivity/resistance to antibacterial preparations were carried out for different groups of microorganisms using standard techniques. Results: The databases "Phenotypes of antibiotic resistance of Vibrio cholerae of various serogroups isolated in the Rostov Region" (2017621303 dated November 14, 2017) and "Spectrum of microflora of open reservoirs in Rostov-on-Don, sensitivity/resistance to antibacterial drugs" (2017620158 dated February 28, 2017) were registered. The article describes the experience in creating and using the databases to process and analyze research results. The databases are regularly supplemented and updated as part of annual monitoring enabling us not only to monitor and analyze large amounts of heterogeneous information, but also to quickly compare the data, analyze sensitivity/resistance of microorganisms of different groups to a wide range of ABP, and visualize the results. Conclusions: The developed databases are primarily intended for multidisciplinary studies of a large number of microorganisms. Creation and development of specialized Internet resources open up new opportunities for organizing a comprehensive effective monitoring of antibiotic resistance in the Russian Federation.

About the Authors

E. A. Bereznyak
Rostov-on-Don Anti-Plague Research Institute
Russian Federation


A. V. Trishina
Rostov-on-Don Anti-Plague Research Institute
Russian Federation


N. A. Selyanskaya
Rostov-on-Don Anti-Plague Research Institute
Russian Federation


I. R. Simonova
Rostov-on-Don Anti-Plague Research Institute
Russian Federation


References

1. Ларцева Л.В., Обухова О.В., Бармин А.Н. Экологическая и биологическая опасность резистентности условно-патогенной микрофлоры к антибиотикам (ОБЗОР) // Российский журнал прикладной экологии. 2015. № 4 (4). С. 47-52.

2. Сухорукова М.В., Эйдельштейн М.В., Склеенова Е.Ю., и др. Антибиотикорезистентность нозокомиальных штаммов Entero-bacteriaceae в стационарах России: результаты многоцентрового эпидемиологического исследования МАРАФОН в 2011-2012 гг. // Клиническая микробиология и антимикробная химиотерапия. 2014. Т. 16. № 4. С. 254-265.

3. Сухорукова М.В., Эйдельштейн М.В. Склеенова Е.Ю. и др. Антибиотикорезистентность нозокомиальных штаммов Acinetobacter spp. в стационарах России: результаты многоцентрового эпидемиологического исследования МАРАФОН в 2011-2012 гг. // Клиническая микробиология и антимикробная химиотерапия. 2014. Т. 16. № 4. С. 266-272.

4. Журавлёв П.В., Панасовец О.П., Алешня В.В. и др. Антибиотикорезистентность бактерий, выделенных из воды открытых водоемов // Здоровье населения и среда обитания. 2015. № 5 (266). С. 24-26.

5. Кулмагамбетов И.Р. Современные подходы к контролю и сдерживанию антибиотикорезистентности в мире // Международный журнал прикладных и фундаментальных исследований. 2015. № 9-1. С. 54-59.

6. Обухова О.В., Ларцева Л.В., Лисицкая И.А. Санитарно-микробиологическая оценка гидроэкосистемы дельты Волги при антропогенном загрязнении // Гигиена и санитария. 2009. № 1. С. 8.

7. Монахова Е.В., Архангельская И.В. Холерные вибрионы нео1/ нео139 серогрупп в этиологии острых кишечных инфекций: современная ситуация в России и в мире // Проблемы особо опасных инфекций. 2016. № 2. С. 14-23.

8. Утепова И.Б., Сагиев З.А., Алыбаев С.Д. и др. Характеристика штаммов холерных вибрионов, выделенных на территории Казахстана // ACTA BIOMEDICA SCIENTIFICA. 2017. Т. 2. № 5-1 (117). С. 100-105.

9. Селянская Н.А., Веркина Л.М., Архангельская И.В. и др. Мониторинг антибиотикорезистентности штаммов холерных вибрионов неО1/не О139 серогрупп, выделенных из объектов окружающей среды в Ростовской области в 2011-2014 гг. // Здоровье населения и среда обитания. 2015. № 7 (268). С. 33-36.

10. Вечерковская М.Ф., Тец В.В. Создание базы данных для решения задач по систематизации результатов опытов, проводимых в ходе научных исследований в микробиологии // Ученые записки СПб ГМУ им. акад. И.П. Павлова 2015.Т. XXII. № 2. С. 64-67.

11. Березняк Е.А., Тришина А.В., Веркина Л.М. и др. Изучение видового разнообразия и антибиотикорезистентности микрофлоры водоемов г. Ростова-на-Дону // Гигиена и санитария. 2018. Т. 97. № 5 С. 405-410.

12. Bassetti M, Pecori D, Peghin M. Multidrug-resistant Gram-negative bacteria-resistant infections: epidemiology, clinical issues and therapeutic options. Ital J Med. 2016; 10(4):364-375. DOI: https:// doi.org/10.4081/itjm.2016.802

13. Curcio D. Multidrug-resistant Gram-negative bacterial infections: are you ready for the challenge? Curr Clin Pharmacol. 2014; 9(1):27-38. DOI: https://doi.org/10.2174/15748847113089990062

14. Port JA, Cullen AC, Wallace JC, et al. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments. Environ Health Perspect. 2014; 122(3):222-228. DOI: https://doi.org/10.1289/ ehp.1307009

15. Srinivasan V, Nam HM, Sawant AA, et al. Distribution of tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae isolated from dairy and nondairy farm soils. Microb Ecol. 2008; 55(2):184-93. DOI: https://doi.org/10.1007/s00248-007-9266-6 the global environmental microbiota. Front Microbiol. 2013; 4:96. DOI: https://doi.org/10.3389/fmicb.2013.00096

16. Delgado-Gardea MC, Tamez-Guerra P, Gomez-Flores R, et al. Multidrug-resistant bacteria isolated from surface water in Bassaseachic Falls National Park, Mexico. Int J Environ Res Public Health. 2016; 13(6):E597. DOI: https://doi.org/10.3390/ijerph13060597

17. Aminov RI, Mackie RI. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett. 2007; 271(2):147-161.

18. Gordon L, Cloeckaert A, Doublet B, et al. Complete sequence of the floR-carrying multiresistance plasmid pAB5S9 from freshwater Aeromonas bestiarum. J Antimicrob Chemother. 2008; 62(1):65-71.

19. Devarajan N, Laffite A, Mulaji CK, et al. Occurrence of antibiotic resistance genes and bacterial markers in a tropical river receiving hospital and urban wastewaters PLoS One. 2016; 11(2):e0149211. DOI: https://doi.org/10.1371/journal.pone.0149211

20. Piotrowska M, Popowska M. Insight into the mobilome of Aeromonas strains. Front Microbiol. 2015; 6:494. DOI: https://doi.org/10.3389/ fmicb.2015.00494

21. Yang Y, Song W, Lin H, et al. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. Environ Int. 2018; 116:60-73. DOI: https://doi.org/10.1016/j.envint.2018.04.011

22. Mala W, Faksri K, Samerpitak K, et al. Antimicrobial resistance and genetic diversity of the SXT element in Vibrio cholerae from clinical and environmental water samples in northeastern Thailand. Infect Genet Evol. 2017; 52:89-95. DOI: https://doi.org/10.1016/]. meegid.2017.04.013

23. Rajpara N, Kutar BM, Sinha R, et al. Role of integrons, plasmids and SXT elements in multidrug resistance of Vibrio cholerae and Providencia vermicola obtained from a clinical isolate of diarrhea. Front Microbiol. 2015; 6:57. DOI: https://doi.org/10.3389/fmicb.2015.00057

24. Rashed SM, Hasan NA, Alam M, et al. Vibrio cholerae O1 with reduced susceptibility to ciprofloxacin and azithromycin isolated from a rural coastal area of Bangladesh. Front Microbiol. 2017; 8:252. DOI: https://doi.org/10.3389/fmicb.2017.00252

25. Rodriguez-Blanco A, Lemos ML, Osorio CR. Integrating conjugative elements as vectors of antibiotic, mercury, and quaternary ammonium compound resistance in marine aquaculture environments. Antimicrob Agents Chemother. 2012; 56(5):2619-26. DOI: https://doi.org/10.1128/ AAC.05997-11

26. Diep TT, Nguyen NT, Nguyen TN, et al. Isolation of New Delhi metallo-p-lactamase 1-producing Vibrio cholerae non-O1, non-O139 strain carrying ctxA, st and hly genes in southern Vietnam. Microbiol Immunol. 2015; 59(5):262-7. DOI: https://doi.org/10.1111/1348-0421.12248

27. Dutta D, Chowdhury G, Pazhani GP, et al. Vibrio cholerae non-O1, non-O139 serogroups and cholera-like diarrhea, Kolkata, India. Emerg Infect Dis. 2013; 19(3):464-467. DOI: https://doi.org/10.3201/ eid1903.121156

28. Li F, Du P, Li B, et al. Distribution of virulence-associated genes and genetic relationships in non-O1/O139 Vibrio cholerae aquatic isolates from China. Appl Environ Microbiol. 2014; 80(16):4987-92. DOI: https://doi.org/10.1128/AEM.01021-14

29. Thapa Shrestha U, Adhikari N, Maharjan R, et al. Multidrug resistant Vibrio cholerae O1 from clinical and environmental samples in Kathmandu city. BMC Infect Dis. 2015; 15:104. DOI: https://doi. org/10.1186/s12879-015-0844-9

30. Thungapathra M, Amita, Sinha KK, et al. Occurrence of antibiotic resistance gene cassettes aac(6’)-lb, dfrA5, dfrA12, and ereA2 in class I integrons in non-O1, non-O139 Vibrio cholerae strains in India. Antimicrob Agents Chemother. 2002; 46(9):2948-55. DOI: https:// doi.org/10.1128/aac.46.9.2948-2955.2002

31. Zhulin IB. Databases for microbiologists J Bacteriol. 2015; 197(15):2458-67. DOI: https://doi.org/10.1128/JB.00330-15

32. MacFadden DR, Fisman D, Andre J, et al. A platform for monitoring regional antimicrobial resistance, using online data sources: ResistanceOpen. J Infect Dis. 2016; 214(Suppl 4):S393-S398. DOI: https://doi.org/10.1093/infdis/jiw343


Review

For citations:


Bereznyak E.A., Trishina A.V., Selyanskaya N.A., Simonova I.R. Creation of Databases for Systematization of Antibiotic Resistance Monitoring Results. Public Health and Life Environment – PH&LE. 2020;(4):59-63. (In Russ.) https://doi.org/10.35627/2219-5238/2020-325-4-59-63

Views: 308


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-5238 (Print)
ISSN 2619-0788 (Online)