Toxicological and Hygienic Aspects of the Dietary Cadmium Intake and Its Human Health Effects: A Literature Review
https://doi.org/10.35627/2219-5238/2023-32-7-49-57
Abstract
Introduction: Cadmium (Cd) is ubiquitous in the diet. Due to the chronic nature of its dietary intake, coupled with a long half-life in humans, Cd can accumulate in various tissues contributing to the development of cancer, kidney dysfunction, cardiovascular diseases, reproductive dysfunction, diabetes, osteoporosis, and increased mortality.
Objective: To analyze published data on toxicological and hygienic aspects of human exposure to cadmium in foods and its health effects.
Material and methods: We have reviewed studies published in Russian and English and found on the eLIBRARY.ru, Science Direct, PubMed, and Scopus information portals using the following keywords: cadmium toxicokinetics, assessment of dietary cadmium intake, and cadmium in food. Of 732 search results, we selected 69 full-text publications presenting data on the metabolism and mechanisms of toxicity of cadmium, hygienic assessments of its content in foods, and the levels of its dietary intake in the population of various countries.
Results: The main dietary sources of cadmium include vegetables, grains, meat, meat by-products, and seafood. The mechanism of Cd toxicity is associated with oxidative stress caused by inhibition of antioxidant enzymes and interference with DNA repair systems. Relatively low chronic oral exposure to cadmium may pose risks to human health and induce a whole number of disorders.
Conclusion: Research into the mechanism of Cd toxicity facilitates the development of highly effective strategies to prevent chronic exposure. Our findings may serve as the basis for assessing risks of exposure to cadmium in food at the population level and establishing maximum residue levels for cadmium in food products.
About the Authors
S. V. KuzminRussian Federation
Sergey V. Kuzmin, Dr. Sci. (Med.), Prof.; Director
2 Semashko Street, Mytishchi, Moscow Region, 141014
V. N. Rusakov
Russian Federation
Vladimir N. Rusakov, Cand. Sci. (Med.), Leading Researcher, Department of Food Hygiene
2 Semashko Street, Mytishchi, Moscow Region, 141014
A. G. Setko
Russian Federation
Andrey G. Setko, Dr. Sci (Med.), Prof.; Head of the Department of Food Hygiene
2 Semashko Street, Mytishchi, Moscow Region, 141014
O. O. Sinitsyna
Russian Federation
Oxana O. Sinitsyna, Dr. Sci. (Med.), Prof., Corresponding Member of the Russian Academy of Sciences; Deputy Director for Science
2 Semashko Street, Mytishchi, Moscow Region, 141014
References
1. Sharma H, Rawal N, Mathew BB. The characteristics, toxicity and effects of cadmium. Int J Nanotechnol. 2015;3:1–9.
2. Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM. The essential metals for humans: A brief overview. J Inorg Biochem. 2019;195:120-129. doi: 10.1016/j.jinorgbio.2019.03.013
3. Peana M, Pelucelli A, Chasapis CT, et al. Biological effects of human exposure to environmental cadmium. Biomolecules. 2022;13(1):36. doi: 10.3390/biom13010036
4. Krivosheev AB, Poteryaeva EL, Krivosheev BN, Kupriyanova LY, Smironova EL. Toxic effects of cadmium on the human body (literature review). Meditsina Truda i Promichlennaya Ekologiya. 2012;(6):35-42. (In Russ.)
5. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The effects of cadmium toxicity. Int J Environ Res Public Health. 2020;17(11):3782. doi: 10.3390/ijerph17113782
6. Maret W, Moulis JM. The bioinorganic chemistry of cadmium in the context of its toxicity. Met Ions Life Sci. 2013;11:1-29. doi: 10.1007/978-94-007-5179-8_1
7. National Research Council (US) Subcommittee on Zinc Cadmium Sulfide. Toxicologic Assessment of the Army’s Zinc Cadmium Sulfide Dispersion Tests. Washington (DC): National Academies Press (US); 1997. doi: 10.17226/5739
8. Plekhanova VA. [The problem of regulating cadmium in soil.] Vestnik Kazanskogo Gosudarstvennogo Energeticheskogo Universiteta. 2010;(2(5)):55-59. (In Russ.)
9. Kubier A, Wilkin RT, Pichler T. Cadmium in soils and groundwater: A review. Appl Geochem. 2019;108:1-16. doi: 10.1016/j.apgeochem.2019.104388
10. Wang R, Sang P, Guo Y, et al. Cadmium in food: Source, distribution and removal. Food Chem. 2023;405(Pt A):134666. doi: 10.1016/j.foodchem.2022.134666
11. Fujishiro H, Hamao S, Tanaka R, Kambe T, Himeno S. Concentration-dependent roles of DMT1 and ZIP14 in cadmium absorption in Caco-2 cells. J Toxicol Sci. 2017;42(5):559-567. doi: 10.2131/jts.42.559
12. Himeno S, Fujishiro H. [Roles of zinc transporters that control the essentiality and toxicity of manganese and cadmium]. Yakugaku Zasshi. 2021;141(5):695-703. (In Japanese.) doi: 10.1248/yakushi.20-00243-5
13. Jorge-Nebert LF, Gálvez-Peralta M, Landero Figueroa J, et al. Comparing gene expression during cadmium uptake and distribution: Untreated versus oral Cd-treated wild-type and ZIP14 knockout mice. Toxicol Sci. 2015;143(1):26-35. doi: 10.1093/toxsci/kfu204
14. Krężel A, Maret W. The functions of metamorphic metallothioneins in zinc and copper metabolism. Int J Mol Sci. 2017;18(6):1237. doi: 10.3390/ijms18061237
15. Prozialeck WC, Edwards JR. Mechanisms of cadmium-induced proximal tubule injury: New insights with implications for biomonitoring and therapeutic interventions. J Pharmacol Exp Ther. 2012;343(1):2-12. doi: 10.1124/jpet.110.166769
16. Prozialeck WC, Edwards JR. Early biomarkers of cadmium exposure and nephrotoxicity. Biometals. 2010;23(5):793- 809. doi: 10.1007/s10534-010-9288-2
17. Chasapis CT. Shared gene-network signatures between the human heavy metal proteome and neurological disorders and cancer types. Metallomics. 2018;10(11):1678-1686. doi: 10.1039/c8mt00271a
18. Klassen RB, Crenshaw K, Kozyraki R, et al. Megalin mediates renal uptake of heavy metal metallothionein complexes. Am J Physiol Renal Physiol. 2004;287(3):F393-F403. doi: 10.1152/ajprenal.00233.2003
19. Suwazono Y, Kido T, Nakagawa H, et al. Biological half-life of cadmium in the urine of inhabitants after cessation of cadmium exposure. Biomarkers. 2009;14(2):77-81. doi: 10.1080/13547500902730698
20. Fransson MN, Barregard L, Sallsten G, Akerstrom M, Johanson G. Physiologically-based toxicokinetic model for cadmium using Markov-chain Monte Carlo analysis of concentrations in blood, urine, and kidney cortex from living kidney donors. Toxicol Sci. 2014;141(2):365-376. doi: 10.1093/toxsci/kfu129
21. Fujishiro H, Hamao S, Tanaka R, Kambe T, Himeno S. Concentration-dependent roles of DMT1 and ZIP14 in cadmium absorption in Caco-2 cells. J Toxicol Sci. 2017;42(5):559-567. doi: 10.2131/jts.42.559
22. Nordberg M, Nordberg GF. Metallothionein and cadmium toxicology – Historical review and commentary. Biomolecules. 2022;12(3):360. doi: 10.3390/biom12030360
23. Meltzer HM, Brantsaeter AL, Borch-Iohnsen B, et al. Low iron stores are related to higher blood concentrations of manganese, cobalt and cadmium in non-smoking, Norwegian women in the HUNT 2 study. Environ Res. 2010;110(5):497-504. doi: 10.1016/j.envres.2010.03.006
24. Ahn J, Kim NS, Lee BK, Oh I, Kim Y. Changes of atmospheric and blood concentrations of lead and cadmium in the general population of South Korea from 2008 to 2017. Int J Environ Res Public Health. 2019;16(12):2096. doi: 10.3390/ijerph16122096
25. Lin J, Zhang F, Lei Y. Dietary intake and urinary level of cadmium and breast cancer risk: A meta-analysis. Cancer Epidemiol. 2016;42:101-107. doi: 10.1016/j.canep.2016.04.002
26. Godt J, Scheidig F, Grosse-Siestrup C, et al. The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol. 2006;1:22. doi: 10.1186/1745-6673-1-22
27. Smolyankin DA, Timasheva GV, Khusnutdinova NYu, et al. The study on biochemical changes in cadmium chloride-induced laboratory animal kidneys. Meditsina Truda i Ekologiya Cheloveka. 2021;(2(26)):72-82. (In Russ.) doi: 10.24412/2411-3794-2021-10206
28. Thévenod F. Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals. 2010;23(5):857-875. doi: 10.1007/s10534-010-9309-1
29. Patra RC, Rautray AK, Swarup D. Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med Int. 2011;2011:457327. doi: 10.4061/2011/457327
30. Cuypers A, Plusquin M, Remans T, et al. Cadmium stress: An oxidative challenge. Biometals. 2010;23(5):927-940. doi: 10.1007/s10534-010-9329-x
31. Wang B, Li Y, Shao C, Tan Y, Cai L. Cadmium and its epigenetic effects. Curr Med Chem. 2012;19(16):2611- 2620. doi: 10.2174/092986712800492913
32. Martinez-Zamudio R, Ha HC. Environmental epigenetics in metal exposure. Epigenetics. 2011;6(7):820-827. doi: 10.4161/epi.6.7.16250
33. Moulis JM. Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. Biometals. 2010;23(5):877-896. doi: 10.1007/s10534-010-9336-y
34. Cannino G, Ferruggia E, Luparello C, Rinaldi AM. Cadmium and mitochondria. Mitochondrion. 2009;9(6):377-384. doi: 10.1016/j.mito.2009.08.009
35. Whittaker MH, Wang G, Chen XQ, et al. Exposure to Pb, Cd, and As mixtures potentiates the production of oxidative stress precursors: 30-day, 90-day, and 180-day drinking water studies in rats. Toxicol Appl Pharmacol. 2011;254(2):154-166. doi: 10.1016/j.taap.2010.10.025
36. Baldwin DR, Marshall WJ. Heavy metal poisoning and its laboratory investigation. Ann Clin Biochem. 1999;36(Pt 3):267-300. doi: 10.1177/000456329903600301
37. Flora SJS, Mittal M, Mehta A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res. 2008;128(4):501-523.
38. Ziatdinova MM, Valova YaV, Mukhammadiyeva GF, Fazlieva AS, Karimov DD, Kudoyarov ER. Analysis of MT1 and ZIP1 gene expression in the liver of rats with chronic poisoning with cadmium chloride. Gigiena i Sanitariya. 2021;100(11):1298-1302. (In Russ.) doi: 10.47470/0016-9900-2021-100-11-1298-1302
39. Habashi F. Zinc, physical and chemical properties. In: Kretsinger RH, Uversky VN, Permyakov EA, eds. Encyclopedia of Metalloproteins. Springer, New York, NY; 2013. doi: 10.1007/978-1-4614-1533-6_179
40. European Food Safety Authority. Cadmium dietary exposure in the European population. EFSA J. 2012;10(1):2551. doi: 10.2903/j.efsa.2012.2551
41. Scientific opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on cadmium in food. EFSA J. 2009;980:1–139. doi: 10.2903/j.efsa.2009.980
42. Report of the Scientific Committee of the Fоod Safety Authority of Ireland. Metals of Toxicological Importance in the Irish Diet. Fоod Safety Authority of Ireland; 2016. Accessed July 22, 2024. https://www.lenus.ie/handle/10147/609836
43. EU maximum levels for cadmium in food for infants and young children sufficient - Exposure to lead should fundamentally be reduced to the achievable minimum. BfR Opinion No. 026/2018. doi 10.17590/20181205-132313-0
44. Kim K, Melough MM, Kim D, et al. Nutritional adequacy and diet quality are associated with standardized heightfor-age among U.S. children. Nutrients. 2021;13(5):1689. doi: 10.3390/nu13051689
45. Awata H, Linder S, Mitchell LE, Delclos GL. Association of dietary intake and biomarker levels of arsenic, cadmium, lead, and mercury among Asian populations in the United States: NHANES 2011–2012. Environ Health Perspect. 2017;125(3):314-323. doi: 10.1289/EHP28
46. Kim H, Lee J, Woo HD, et al. Association between dietary cadmium intake and early gastric cancer risk in a Korean population: A case-control study. Eur J Nutr. 2019;58(8):3255-3266. doi: 10.1007/s00394-018-1868-x
47. Ali Hussein M, Kamalakkannan A, Valinezhad K, et al. The dynamic face of cadmium-induced Carcinogenesis: Mechanisms, emerging trends, and future directions. Curr Res Toxicol. 2024;6:100166. doi: 10.1016/j.crtox.2024.100166
48. Song Y, Wang Y, Mao W, et al. Dietary cadmium exposure assessment among the Chinese population. PLoS One. 2017;12(5):e0177978. doi: 10.1371/journal.pone.0177978
49. Zhao FJ, Ma Y, Zhu YG, Tang Z, McGrath SP. Soil contamination in China: Current status and mitigation strategies. Environ Sci Technol. 2015;49(2):750-759. doi: 10.1021/es5047099
50. Calafat AM. The U.S. National Health and Nutrition Examination Survey and human exposure to environmental chemicals. Int J Hyg Environ Health. 2012;215(2):99-101. doi: 10.1016/j.ijheh.2011.08.014
51. Satarug S. Dietary cadmium intake and its effects on kidneys. Toxics. 2018;6(1):15. doi: 10.3390/toxics6010015
52. Watanabe T, Zhang ZW, Moon CS, et al. Cadmium exposure of women in general populations in Japan during 1991–1997 compared with 1977–1981. Int Arch Occup Environ Health. 2000;73(1):26-34. doi: 10.1007/pl00007934
53. Nogawa K, Suwazono Y, Nishijo M, et al. Increase of lifetime cadmium intake dose-dependently increased all cause of mortality in female inhabitants of the cadmium-polluted Jinzu River basin, Toyama, Japan. Environ Res. 2018;164:379-384. doi: 10.1016/j.envres.2018.03.019
54. Nishijo M, Nogawa K, Suwazono Y, Kido T, Sakurai M, Nakagawa H. Lifetime cadmium exposure and mortality for renal diseases in residents of the cadmium-polluted Kakehashi River basin in Japan. Toxics. 2020;8(4):81. doi: 10.3390/toxics8040081
55. Hayashi Y, Kobayashi E, Okubo Y, Suwazono Y, Kido T, Nogawa K. Excretion levels of urinary calcium and phosphorus among the inhabitants of Cd-polluted Kakehashi River basin of Japan. Biol Trace Elem Res. 2003;91(1):45-55. doi: 10.1385/BTER:91:1:45
56. Vogt R, Bennett D, Cassady D, Frost J, Ritz B, Hertz-Picciotto I. Cancer and non-cancer health effects from food contaminant exposures for children and adults in California: A risk assessment. Environ Health. 2012;11:83. doi: 10.1186/1476-069X-11-83
57. Spungen JH. Children’s exposures to lead and cadmium: FDA total diet study 2014–16. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2019;36(6):893- 903. doi: 10.1080/19440049.2019.1595170
58. World Health Organization, Geneva. Safety evaluation of certain contaminants in food. Prepared by the Sixty-fourth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). FAO Food Nutr Pap. 2006;82:1-778.
59. Hidalgo J, Aschner M, Zatta P, Vasák M. Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull. 2001;55(2):133-145. doi: 10.1016/s0361-9230(01)00452-x
60. Bjørklund G, Shanaida M, Lysiuk R, et al. Selenium: An antioxidant with a critical role in anti-aging. Molecules. 2022;27(19):6613. doi: 10.3390/molecules27196613
61. Cardoso BR, Roberts BR, Bush AI, Hare DJ. Selenium, selenoproteins and neurodegenerative diseases. Metallomics. 2015;7(8):1213-1228. doi: 10.1039/c5mt00075k
62. Liu MC, Xu Y, Chen YM, et al. The effect of sodium selenite on lead induced cognitive dysfunction. Neurotoxicology. 2013;36:82-88. doi: 10.1016/j.neuro.2013.03.008
63. Bulat ZP, Djukić-Cosić D, Malicević Z, Bulat P, Matović V. Zinc or magnesium supplementation modulates cd intoxication in blood, kidney, spleen, and bone of rabbits. Biol Trace Elem Res. 2008;124(2):110-117. doi: 10.1007/s12011-008-8128-5
64. Sitek A, Kozłowska L. The role of well-known antioxidant vitamins in the prevention of cadmium-induced toxicity. Int J Occup Med Environ Health. 2022;35(4):367-392. doi: 10.13075/ijomeh.1896.01912
65. Forsyth CB, Farhadi A, Jakate SM, Tang Y, Shaikh M, Keshavarzian A. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol. 2009;43(2):163-172. doi: 10.1016/j.alcohol.2008.12.009
66. Zhai Q, Wang G, Zhao J, et al. Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice. Appl Environ Microbiol. 2013;79(5):1508-1515. doi: 10.1128/AEM.03417-12
67. Le B, Yang SH. Biosorption of cadmium by potential probiotic Pediococcus pentosaceus using in vitro digestion model. Biotechnol Appl Biochem. 2019;66(4):673-680. doi: 10.1002/bab.1783
Supplementary files
Review
For citations:
Kuzmin S.V., Rusakov V.N., Setko A.G., Sinitsyna O.O. Toxicological and Hygienic Aspects of the Dietary Cadmium Intake and Its Human Health Effects: A Literature Review. Public Health and Life Environment – PH&LE. 2024;32(7):49-57. (In Russ.) https://doi.org/10.35627/2219-5238/2023-32-7-49-57