Characteristics of genomes of opportunistic bacteria in zoogenic ecosystems of the Russian Western Arctic Islands
https://doi.org/10.35627/2219-5238/2024-32-6-81-88
Abstract
Introduction: Arctic ecosystems are the most important object of microbiological surveillance that helps monitor a rapidly changing natural environment affected by climate change and industrial development of the northern territories.
Objective: To assess the epidemic potential of opportunistic bacteria associated with animals from the Arctic islands of the Barents and Kara Seas.
Materials and methods: We have studied four strains of gram-negative opportunistic bacteria (Serratia fonticola, Aeromonas salmonicida, Yersinia kristensenii, and Yersinia rochesterensis) isolated in 2021–2022 during microbiological testing of 46 samples of zoogenic biologic materials from the natural ecosystems of Vaigach Island, Novaya Zemlya and Franz Josef Land archipelagos. Genomes of the isolated microbial strains were sequenced using the Illumina MiSeq sequencing system and, after de novo assembly using the SPAdes 13.0 genomic assembler, annotated with RAST (Rapid Annotation using Subsystem Technology).
Results: The strains were shown to possess a number of virulence factors and antibiotic resistance genes, which allows them to be considered as potential pathogens. Classes A, B, and C beta-lactamases were found in the genomes of all the bacteria under study, and operons for siderophores and type IV secretion systems were typical of virulence factors. In addition, the pertussis-like YtxA enterotoxin was identified in Yersinia genomes.
Conclusion: Our findings indicate the possibility of emergence of natural foci of notifiable infections on the islands in the high-latitude Arctic promising in terms of tourism development and economic growth.
Keywords
About the Authors
B. I. AslanovRussian Federation
Batyrbek I. Aslanov, Dr. Sci. (Med.), Head of the Department of Epidemiology, Parasitology and Disinfection; Head of the Laboratory of Molecular Epidemiology and Bacteriophage Research
41 Kirochnaya Street, Saint Petersburg, 191015
A. E Goncharov
Russian Federation
Artemiy E. Goncharov, Dr. Sci. (Med.), Head of the Laboratory of Functional Genomics and Proteomics of Microorganisms; Department of Epidemiology, Parasitology and Disinfection
41 Kirochnaya Street, Saint Petersburg, 191015; 12 Academician Pavlov Street, Saint Petersburg, 197022
D. V. Azarov
Russian Federation
Daniil V. Azarov, Cand. Sci. (Med.), Senior Researcher, Laboratory of Molecular Epidemiology and Bacteriophage Research; Researcher, Laboratory of Functional Genomics and Proteomics of Microorganisms
41 Kirochnaya Street, Saint Petersburg, 191015; 12 Academician Pavlov Street, Saint Petersburg, 197022
A. N. Trofimova
Russian Federation
Anna N. Trofimova, Deputy Head of the Research Expedition Team at the “Arctic Floating University” expedition
17 Severnaya Dvina Embankment, Arkhangelsk, 163002
A. S. Aksenov
Russian Federation
Andrey S. Aksenov, Cand. Sci. (Tech.), Professor, Department of Biology, Ecology and Biotechnology, Head of the Sector of the Laboratory of Arctic Biomonitoring
17 Severnaya Dvina Embankment, Arkhangelsk, 163002
I. A. Mizin
Russian Federation
Ivan A. Mizin, Cand. Sci. (Biol.), Senior Researcher, Laboratory of Bioresources and Ethnography
20 Nikolsky Avenue, Arkhangelsk, 163020
V. V. Kolodzhieva
Russian Federation
Viktoria V. Kolodzhieva, Cand. Sci. (Med.), Associate Professor, Department of Epidemiology, Parasitology and Disinfection
41 Kirochnaya Street, Saint Petersburg, 191015
D. A. Kushnirenko
Russian Federation
Daria A. Kushnirenko, Laboratory Assistant, Laboratory of Innovative Methods of Microbiological Monitoring, World-Class Research Center “Center for Personalized Medicine”
12 Academician Pavlov Street, Saint Petersburg, 197022
L. A. Kraeva
Russian Federation
Lyudmila A. Kraeva, Dr. Sci. (Med.), Head of the Laboratory of Medical Bacteriology
12 Academician Pavlov Street, Saint Petersburg, 197022
A L. Panin
Russian Federation
Alexander L. Panin, Cand. Sci. (Med.), Chief Specialist for Medical Support for Expeditions
38 Bering Street, Saint Petersburg, 199397
V. A. Krylenkov
Russian Federation
Viacheslav A. Krylenkov, Dr. Sci. (Biol.), Head of the Polar Regions Monitoring сenter
5 Universitetskaya Embankment, Saint Petersburg, 199034
References
1. Alsamara I, Ogilvie L, Sudbrak R, Brand A. One Health lens for antimicrobial resistance research and funding: A systematic review. OMICS. 2023;27(12):570-580. doi: 10.1089/omi.2023.0049
2. McEwen SA, Collignon PJ. Antimicrobial Resistance: A One Health Perspective. Microbiol Spectr. 2018;6(2). doi: 10.1128/microbiolspec.ARBA-0009-2017
3. Panda S, Bhargava B, Gupte MD. One World One Health: Widening horizons. Indian J Med Res. 2021;153(3):241- 243. doi: 10.4103/ijmr.ijmr_1056_21
4. Naddeo V. One planet, one health, one future: The environmental perspective. Water Environ Res. 2021;93(9):14721475. doi: 10.1002/wer.1624
5. Korenberg EI. Natural focality of infections: Current problems and prospects of investigations. Zoologicheskiy Zhurnal. 2010;89(1):5-17. (In Russ.)
6. Deviatkin AA, Vakulenko YA, Dashian MA, Lukashetv AA. Evaluating the impact of anthropogenic factors on the dissemination of contemporary cosmopolitan, Arctic, and Arctic-like rabies viruses. Viruses. 2021;14(71):66. doi: 10.3390/v14010066
7. Gass JD Jr, Kellogg HK, Hill NJ, Puryear WB, Nutter FB, Runstadler JA. Epidemiology and ecology of influenza A viruses among wildlife in the Arctic. Viruses. 2022;14(7):e1531. doi: 10.3390/v14071531
8. Liskova EA, Egorova IY, Selyaninov YO, et al. Reindeer anthrax in the Russian Arctic, 2016: Climatic determinants of the outbreak and vaccination effectiveness. Front Vet Sci. 2021;8:e668420. doi: 10.3389/fvets.2021.668420
9. Bettencourt LMA, Ribeiro RM. Real time Baysian estimation of the epidemic potential of emerging infectious diseases. PloS One. 2008;3(5):e2185. doi: 10.1371/journal.pone.0002185
10. Suarez G, Khajanchi BK, Sierra JC, Erova TE, Sha J, Chopra AK. Actin cross-linking domain of Aeromonas hydrophila repeat in toxin A (RtxA) induces host cell rounding and apoptosis. Gene. 2012;506(2):369-376. doi: 10.1016/j.gene.2012.07.012
11. Faure E, Kwong K., Nguyen D. Pseudomonas aeruginosa in chronic lung infections: How to adapt within the host? Front Immunol. 2018;9:2416. doi: 10.3389/fimmu.2018.02416
12. Littler DR, Ang SY, Moriel DG, et al. Structure-function analyses of a pertussis-like toxin from pathogenic Escherichia coli reveal a distinct mechanism of inhibition of trimeric G-proteins. J Biol Chem. 2017;292(36):1514315158. doi: 10.1074/jbc.M117.796094
13. Young VB, Miller VL, Falkow S, Schoolnik GK. Sequence, localization and function of the invasion protein of Yersinia enterocolitica. Mol Microbiol. 1990;4(7):1119-1128. doi: 10.1111/j.1365-2958.1990.tb00686.x
14. Podladchikova O, Antonenka U, Heesemann J, Rakin A. Yersinia pestis autoagglutination factor is a component of the type six secretion system. Int J Med Microbiol. 2011;301(7):562-569. doi: 10.1016/j.ijmm.2011.03.004
15. Wang P, Dong JF, Li RQ, Li L, Zou QH. Roles of the Hcp family proteins in the pathogenicity of Salmonella typhimurium 14028s. Virulence. 2020; 11(1):1716-1726. doi: 10.1080/21505594.2020.1854538
16. Dallaire-Dufresne S, Tanaka KH, Trudel MV, Lafaille A, Charette SJ. Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Vet Microbiol. 2014;169(1-2):1- 7. doi: 10.1016/j.vetmic.2013.06.025
17. Hernández J, González-Acuña D. Anthropogenic antibiotic resistance genes mobilization to the polar regions. Infect Ecol Epidemiol. 2016;6:e32112. doi: 10.3402/iee.v6.32112
18. Tan L, Li L, Ashbolt N, Wang X. et al. Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin. Sci Total Environ. 2018 Apr 15;621:1176-1184. doi: 10.1016/j.scitotenv.2017.10.110
19. Haan TJ, Drown DM. Unearthing Antibiotic Resistance Associated with Disturbance-Induced Permafrost Thaw in Interior Alaska. Microorganisms. 2021;9(1):e116. doi: 10.3390/microorganisms9010116
20. Sunde M, Ramstad SN, Rudi K, et al. Plasmid-associated antimicrobial resistance and virulence genes in Escherichia coli in a high arctic reindeer subspecies. J Glob Antimicrob Resist. 2021; 26: 317-322. doi: 10.1016/j.jgar.2021.06.003
21. Gavrilo MV, Martynova DM. Conservation of rare species of marine flora and fauna of the Russian Arctic National Park, included in the Red Data Book of the Russian Federation and in the IUCN Red List. Nature Conservation Research. 2017;2(S1):10-42. (In Russ.) doi: 10.24189/ncr.2017.017
22. Vecherskii MV, Kuznetsova TA, Khayrullin DR, et al. Anthropogenic neighborhood impact on bacterial and fungal communities in polar bear feces. Animals (Basel). 2023;13(13):2067. doi: 10.3390/ani13132067
23. Nguyen SV, Cunningham SA, Jeraldo P, Tran A, Patel R. Yersinia occitanica is a later heterotypic synonym of Yersinia kristensenii subsp. rochesterensis and elevation of Yersinia kristensenii subsp. rochesterensis to species status. International Journal of Systematic Evol Microbiol Bacteriology. 2021;71(2):004626. doi: 10.1099/ijsem.0.004626
24. Panin AL. [Microbiological monitoring of sapro-zoonotic pathogenes in polar regions.] Candidate of Medical Sciences thesis. Moscow; 2023. (In Russ.) Accessed June 28, 2024. https://www.rudn.ru/storage/media/science_dissertation/9fb83289-26d1-4a4b-a31a-3a4bf616380a/panin-dissertaciya-100423.pdf
25. Virdi JS, Sachdeva P. Molecular heterogeneity in Yersinia enterocolitica and Y. enterocolitica-like' species – Implications for epidemiology, typing and taxonomy. FEMS Immunol Med Microbiol. 2005;45(1):1-10. doi: 10.1016/j.femsim.2005.03.006
Supplementary files
Review
For citations:
Aslanov B.I., Goncharov A.E., Azarov D.V., Trofimova A.N., Aksenov A.S., Mizin I.A., Kolodzhieva V.V., Kushnirenko D.A., Kraeva L.A., Panin A.L., Krylenkov V.A. Characteristics of genomes of opportunistic bacteria in zoogenic ecosystems of the Russian Western Arctic Islands. Public Health and Life Environment – PH&LE. 2024;32(6):81-88. (In Russ.) https://doi.org/10.35627/2219-5238/2024-32-6-81-88