Preview

Public Health and Life Environment – PH&LE

Advanced search

Analysis of Antiphage Systems in Vibrio cholerae O1 El Tor Biotype Strains

https://doi.org/10.35627/2219-5238/2023-31-11-94-100

Abstract

Introduction: Cholera lytic phages contribute to the genetic diversity and evolution of Vibrio cholerae. To protect against the phages, the pathogen has acquired various resistance mechanisms.

Objective: To identify antiphage systems located on mobile genetic elements in V. cholerae serogroup O1 El Tor biotype strains.

Materials and methods: Nucleotide sequences of complete genomes of 77 toxigenic V. cholerae O1 El Tor strains imported to the Russian Federation and neighboring countries in 1970–2014 were analyzed using the Blast NCBI GenBank algorithm and REALPHY online tool.

Results: We observed that the examined strains contained two types of anti-phage systems in hotspot 5 of the ICE SXT element: BREX, common for ICE VchBan9, and BREX with Abi typical of ICE VchInd5. We established a direct relationship between the presence of the PLE4 antiphage island and the kappa phage. V. cholerae O1 El Tor strains containing PLE4, except for one isolate, have BREX ICE VchBan9 and are grouped into a separate cluster in phylogenetic analysis. Strains with ICE VchInd5 lacking PLE4 and kappa phage also form a separate group.

Conclusions: The data obtained on the presence of antiphage systems in previously imported strains of V. cholerae O1 biotype El Tor expand knowledge of their genetic organization. The study of the structure of antiphage genes of hotspot 5 of the ICE SXT element makes it possible to reveal genetic differences between closely related strains of V. cholerae O1 biotype El Tor and to determine the type of ICE SXT element.

About the Authors

S. P. Zadnova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

Svetlana P. Zadnova, Dr. Sci. (Biol.), Leading Researcher, Head of the Laboratory of Pathogenic Vibrios

46 Universitetskaya Street, Saratov, 410005



N. A. Plekhanov
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

Nikita A. Plekhanov, Cand. Sci. (Biol.), Senior Researcher, Laboratory of Pathogenic Vibrios

46 Universitetskaya Street, Saratov, 410005



A. Yu. Spirina
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

Alina Yu. Spirina, Junior Researcher, Laboratory of Pathogenic Vibrios

46 Universitetskaya Street, Saratov, 410005



N. B. Cheldyshova
Russian Research Anti-Plague Institute “Microbe”
Russian Federation

Nadezhda B. Cheldyshova, Cand. Sci. (Med.), Senior Researcher, Laboratory of Pathogenic Vibrios

46 Universitetskaya Street, Saratov, 410005



References

1. Bhandari M, Jennison AV, Rathnayake IU, Huygens F. Evolution, distribution and genetics of atypical Vibrio cholerae – A review. Infect Genet Evol. 2021;89:104726. doi: 10.1016/j.meegid.2021.104726

2. Almagro-Moreno S, Pukatzki S, eds. Vibrio spp. Infections. Cham, Switzerland: Springer; 2023. doi: 10.1007/978-3-031-22997-8

3. Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A. 2007;104(39):15508-15513. doi: 10.1073/pnas.0706532104

4. Faruque SM, Mekalanos JJ. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence. 2012;3(7):556565. doi: 10.4161/viru.22351

5. Faruque SM, Naser IB, Islam MJ, et al. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci U S A. 2005;102(5):17021707. doi: 10.1073/pnas.0408992102

6. Seed KD, Bodi KL, Kropinski AM, et al. Evidence of a dominant lineage of Vibrio cholerae-specific lytic bacteriophages shed by cholera patients over a 10-year period in Dhaka, Bangladesh. mBio. 2011;2(1):e00334-10. doi: 10.1128/mbio.00334-10

7. Gao L, Altae-Tran H, Böhning F, et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science. 2020;369(6507):1077-1084. doi: 10.1126/science.aba0372

8. Pogozhova MP, Gayevskaya NE, Vodopyanov AS, et al. Biological properties and genetic characteristics of experimental diagnostic Vibrio cholerae bacteriophages. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii. 2021;98(3):290–297. (In Russ.) doi: 10.36233/0372-9311-39

9. Gumayunova KS, Zinina OS, Ovchinnikova MV, Gaevskaya NE, Sinyagina YuV, Nikiforov AK. Evaluation of the test results of an experimental phage for the diagnosis of cholera El Tor. Vestnik Biotekhnologii i Fiziko-Khimicheskoy Biologii im. Yu.A. Ovchinnikova. 2021;17(4):34–40. (In Russ.)

10. Yen M, Camilli A. Mechanisms of the evolutionary arms race between Vibrio cholerae and Vibriophage clinical isolates. Int Microbiol. 2017;20(3):116–120. doi: 10.2436/20.1501.01.292

11. Oechslin F. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses. 2018;10(7):351. doi: 10.3390/v10070351

12. Anoprienko AO, Tyurina AV, Gaevskaya NE, Pogozhova MP. Creation of an experimental preventive preparation based on cholera bacteriophages. Vestnik Biotekhnologii i Fiziko-Khimicheskoy Biologii im. Yu.A. Ovchinnikova. 2020;16(3):10-13. (In Russ.)

13. O’Hara BJ, Barth ZK, McKitterick AC, Seed KD. A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome. PLoS Genet. 2017;13(6):e1006838. doi: 10.1371/journal.pgen.1006838

14. Angermeyer A, Hays SG, Nguyen MHT, et al. Evolutionary sweeps of subviral parasites and their phage host bring unique parasite variants and disappearance of a phage CRISPR-Cas system. mBio. 2021;13(1):e03088-21. doi: 10.1128/mbio.03088-21

15. Zadnova SP, Plekhanov NA, Spirina AYu, Shvidenko IG, Savel’ev VN. Detection of phage-induced mobile genetic elements in strains of Vibrio cholerae O1 biovar El Tor. Problemy Osobo Opasnykh Infektsiу. 2023;(2):112-119. (In Russ.) doi: 10.21055/0370-1069-2023-2-112-119

16. Onishchenko GG, Moskvitina EA, Vodop’janov AS, et al. Retrospective molecular-epidemiological analysis of cholera epidemic in the Republic of Dagestan in 1994. Problemy Osobo Opasnykh Infektsiу. 2016;(4):33–41. (In Russ.) doi: 10.21055/0370-1069-2016-4-33-41

17. Gladkikh AS, Feranchuk SI, Ponomareva AS, Bochalgin NO, Mironova LV. Antibiotic resistance in Vibrio cholerae El Tor strains isolated during cholera complications in Siberia and the Far East of Russia. Infect Genet Evol. 2020;78:104096. doi: 10.1016/j.meegid.2019.104096

18. Kapfhammer D, Blass J, Evers S, Reidl J. Vibrio cholerae phage K139: complete genome sequence and comparative genomics of related phages. J Bacteriol. 2002;184(23):6592–6601. doi: 10.1128/JB.184.23.6592-6601.2002

19. LeGault KN, Hays SG, Angermeyer A, et al. Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts. Science. 2021;373(6554):eabg2166. doi: 10.1126/science.abg2166

20. Wozniak RAF, Fouts DE, Spagnoletti M, et al. Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLoS Genet. 2009;5(12):e1000786. doi: 10.1371/journal.pgen.1000786

21. Smirnova NI, Rybal’chenko DA, Shchelkanova EYu, Lozovsky YuV, Krasnov YaM, Kutyrev VV. Variability of multiple resistance to antibiotics in cholera agent associated with different types of SXT element and spontaneous chromosome mutations. Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya. 2022;40(2):28-36. (In Russ.) doi: 10.17116/molgen20224002128

22. Smirnova NI, Zadnova SP, Agafonov DA, Shashkova AV, Cheldyshova NB, Cherkasov AV. Comparative molecular-genetic analysis of mobile elements in natural strains of cholera agent. Genetika. 2013;49(9):1036-1047. (In Russ.) doi: 10.7868/S0016675813090087

23. Savelyev VN, Kovalev DA, Savelyeva IV, et al. The evolution of phenotypic properties and molecular genetic organization of genomes of Vibrio cholerae O1 El Tor variant strains isolated from patients and environmental objects in the Caucasus in 1970–1998. Zdorov’e Naseleniya i Sreda Obitaniya. 2020;(12(333)):56–61. (In Russ.) doi: 10.35627/2219-5238/2020-333-12-56-61

24. Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol. 2014;31(5):1077–1088. doi: 10.1093/molbev/msu088

25. Zadnova SP, Smirnova NI. Isolation of antibiotics resistance genes in Vibrio cholerae O1 and O139 serogroup strains. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii. 2015;(3):3-10. (In Russ.)

26. Vodop’yanov SO, Vodop’yanov AS, Oleynikov IP, Titova SV. Prevalence of ice elements of different types in V. cholerae. Zdorov’e Naseleniya i Sreda Obitaniya. 2018;(1(298)):33-35. (In Russ.) doi: 10.35627/2219-5238/2018-298-1-33-35


Review

For citations:


Zadnova S.P., Plekhanov N.A., Spirina A.Yu., Cheldyshova N.B. Analysis of Antiphage Systems in Vibrio cholerae O1 El Tor Biotype Strains. Public Health and Life Environment – PH&LE. 2023;31(11):94-100. (In Russ.) https://doi.org/10.35627/2219-5238/2023-31-11-94-100

Views: 271


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-5238 (Print)
ISSN 2619-0788 (Online)