Assessment of the Development of Metabolic Disorders Following Chronic Low-Dose Exposure to the Amine Salt of 2,4-Dichlorophenoxyacetic Acid in the Animal Experiment
https://doi.org/10.35627/2219-5238/2023-32-7-34-39
Abstract
Introduction: 2,4-Dichlorophenoxyacetic acid (2,4-DA) is one of the most common environmental pollutants from the group of organochlorine herbicides. In our experiment, we focused on effects of low doses of 2,4-dichlorophenoxyacetic acid on metabolic parameters, which have been studied to a lesser extent.
Objective: To assess the development of metabolic disorders following chronic low-dose exposure to the amine salt of 2,4-dichlorophenoxyacetic acid in an experiment.
Materials and methods: The study was conducted on 36 male Wistar rats for 16 weeks in the spring-summer period of 2022 (11.04–31.07) with the 12/12 hour day/night cycle. Only healthy animals with the body weight of 170 ± 3 g were included in the experiment and divided into the control and exposure groups (Groups 1 and 2, respectively) of 18 animals each. The latter were exposed to 0.5 MAC of 2,4-DA administered with drinking water (0.3–0.4 μg/kg/day). At week 14, the animals underwent a glucose tolerance test. To assess the development of metabolic disorders, the following parameters were measured in blood serum: total protein, albumin, creatinine, uric acid, activity of aspartate and alanine transaminases, alkaline phosphatase, lactate dehydrogenase, total cholesterol, high-density lipoprotein cholesterol, very low- and low-density lipoprotein cholesterol, and triacylglycerols. Statistica 10.0 was used for the analysis. The data were normally distributed (chi-squared test) and are presented as mean (M) and standard error of the mean (m).
Results: We observed a decrease in the levels of total protein and albumin and a moderate increase in the activity of serum enzymes (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase) accompanied by the development of hypercholesterolemia, triacylglyceridemia, and dyslipoproteinemia. Results of the glucose tolerance test showed that low doses of 2,4-dichlorophenoxyacetic acid induced insulin resistance in the exposed animals. The main parameters of chemiluminescence in their blood serum, such as spontaneous luminescence, fast flash amplitude, and light sum, were 2.4, 9.3, and 4.1 times higher than in the controls, respectively. We also established a decrease in the level of serum iron by 20 % and an increase in that of ferritin by 12 % compared to the control rats.
Conclusions: Long-term low-dose exposure to 2,4-DA induced an increase in the level of markers of metabolic disorders, which can be used to diagnose and assess the state of metabolic processes in the body.
About the Authors
D. S. KarmanovaRussian Federation
Daria S. Karmanova, Cand. Sci. (Med.), Senior Lecturer, Department of Chemistry
6 Sovetskaya Street, Orenburg, 460014
V. B. Boeva
Russian Federation
Tatyana V. Boeva, Postgraduate, Department of General Hygiene
6 Sovetskaya Street, Orenburg, 460014
D. A. Kryazhev
Russian Federation
Dmitrii A. Kryazhev, Cand. Sci. (Med.), Associate Professor, Department of General Hygiene
6 Sovetskaya Street, Orenburg, 460014
V. M. Boev
Russian Federation
Viktor M. Boev, Dr. Sci. (Med.), Prof., Honored Scientist of the Russian Federation, Honored Worker of the Higher School of the Russian Federation; Head of the Department of General Hygiene
6 Sovetskaya Street, Orenburg, 460014
E. L. Borshchuk
Russian Federation
Evgeni L. Borshchuk, Dr. Sci. (Med.), Prof.; Head of the Department of Public Health and Healthcare No. 1
6 Sovetskaya Street, Orenburg, 460014
References
1. Жолдакова З.И., Синицына О.О., Мамонов Р.А., Лебедь-Шарлевич Я.И., Печникова И.А. Совершенствование требований к контролю за применением хлорсодержащих средств обеззараживания воды // Здоровье населения и среда обитания – ЗНиСО. 2019. №12. С.30-35. doi: 10.35627/2219-5238/2019-321-12-30-35
2. Schinasi L and Leon ME. Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active Ingredients: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health. 2014; 11(4):4449–4527. doi: 10.3390/ijerph110404449
3. Sameshima K, Kobae H, Fofana D, Yoshidome K, Nishi J, Miyata K. Effects of pure 2,4-dichlorophenoxyacetic acid on cultured rat embryos. Congenit Anom (Kyoto). 2004;44(2):93-6. doi: 10.1111/j.1741-4520.2004.00014.x
4. Singla S, Malvia S, Bairwa RP, Asif M, Goyal S. A rare case 2,4 Dichlorphenoxyacetic acid (2, 4-D) poisoning. Int J Contemp Pediatr. 2017;4:1532-3. doi:10.18203/2349-3291.ijcp20172701
5. Venkov P, Topas-Ancheva M, Georgieva M, Alexieva V, Karanov E. Genotoxic effect of substituted phenoxyacetic acids. Arch Toxicol. 2000;74(9):560-6. doi: 10.1007/s002040000147
6. Bongiovanni B, Ferri A, Brusco A, et al. Adverse effects of 2,4-dichlorophenoxyacetic acid on rat cerebellar granule cell cultures were attenuated by amphetamine. Neurotox Res. 2011;19(4):544-55. doi: 10.1007/s12640-010-9188-9
7. Harris SA, Villeneuve PJ, Crawley CD, et al. National study of exposure to pesticides among professional applicators: an investigation based on urinary biomarkers. J Agric Food Chem. 2010;58(18):10253-61. doi: 10.1021/jf101209g
8. Красиков С. И., Боев М. В. Влияние воды, содержащей органические соединения, на развитие инсулинорезистентности в модельном эксперименте // Анализ риска здоровью - 2020: Материалы X Всероссийской научно-практической конференции с международным участием /Под редакцией А.Ю. Поповой, Н.В. Зайцевой. Том 2. Пермь: Пермский национальный исследовательский политехнический университет, 2020. С. 450-455.
9. Yilmaz B, Terekeci H, Sandal S, Kelestimur F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Reviews in Endocrine and Metabolic Disorders. 2019;21(1): 127–147. doi:10.1007/s11154-019-09521-z
10. Lee D.-H, Steffes MW, Sjödin A, et al. Low Dose Organochlorine Pesticides and Polychlorinated Biphenyls Predict Obesity, Dyslipidemia, and Insulin Resistance among People Free of Diabetes. PLoS ONE. 2011; 6(1):e15977. doi:10.1371/journal.pone.0015977
11. Mostafalou S and Abdollahi M.. Pesticides: an update of human exposure and toxicity. Archives of Toxicology. 2016;91(2):549–599. doi:10.1007/s00204-016-1849-x
12. Toz H and Değer Y. The Effect of Chitosan on the Erythrocyte Antioxidant Potential of Lead Toxicity-Induced Rats. Biological Trace Element Research. 2017;184(1): 114–118. doi:10.1007/s12011-017-1164-2
13. Robin MA, Sauvage I, Grandperret T, et al. Ethanol increases mitochondrial cytochrome P450 2E1 in mouse liver and rat hepatocytes. FEBS Lett. 2005;579(30):6895-902. doi: 10.1016/j.febslet.2005.11.0292005
14. Tayeb W, Nakbi A, Cheraief I, Miled A, Hammami M. Alteration of lipid status and lipid metabolism, induction of oxidative stress and lipid peroxidation by 2,4-dichlorophenoxyacetic herbicide in rat liver. Toxicol Mech Methods. 2013;23(6):449-58. doi: 10.3109/15376516.2013.780275
15. Dongiovanni P, Fracanzani AL, Fargion S, Valenti L. Iron in fatty liver and in the metabolic syndrome: A promising therapeutic target. J Hepatol. 2011;55(4):920-32. doi: 10.1016/j.jhep.2011.05.008
16. Green A, Basile R, Rumberger JM. Transferrin and iron induce insulin resistance of glucose transport in adipocytes. Metabolism. 2006;55:1042–1045. doi: 10.1016/j.jhep.2011.05.008
17. Kim KH, Kabir E, Jahan SA. Exposure to pesticides and the associated human health effects. Science of The Total Environment. 2017; 575(1):525–535. doi: 10.1016/j.scitotenv.2016.09.009
18. Bukowska B, Kowalska S. The presence and toxicity of phenol derivatives – their effect on human erythrocytes.Current Topics in Biophysics. 2003;27(1-2):43–48.
19. Schreinemachers DM. Perturbation of lipids and glucose metabolism associated with previous 2,4-D exposure: a crosssectional study of NHANES III data, 1988–1994. Environ Health. 2010;9:11. doi: 10.1186/1476-069X-9-11
20. Kahn SE, Cooper ME, Prato SD. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. The Lancet. 2014; 383 (9922):1068–1083. doi: 10.1016/S0140-6736(13)62154-6
21. Kleinert M, Clemmensen C, Hofmann SM, et al. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol. 2018;14(3):140-162. doi: 10.1038/nrendo.2017.161
22. Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol. 2019;234(6):8152-8161. doi: 10.1002/jcp.27603
23. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15(5):288-298.doi: 10.1038/s41574-019-0176-8
24. Zhang R, Hou T, Cheng H, Wang X. NDUFAB1 protects against obesity and insulin resistance by enhancing mitochondrial metabolism. FASEB J. 2019;33(12):13310-13322. doi: 10.1096/fj.201901117RR
25. Berthoud H-R, Morrison CD, Münzberg H. The obesity epidemic in the face of homeostatic body weight regulation: What went wrong and how can it be fixed? Physiol Behav. 2020;222:112959. doi: 10.1016/j.physbeh.2020.112959
Supplementary files
Review
For citations:
Karmanova D.S., Boeva V.B., Kryazhev D.A., Boev V.M., Borshchuk E.L. Assessment of the Development of Metabolic Disorders Following Chronic Low-Dose Exposure to the Amine Salt of 2,4-Dichlorophenoxyacetic Acid in the Animal Experiment. Public Health and Life Environment – PH&LE. 2024;32(7):34-39. (In Russ.) https://doi.org/10.35627/2219-5238/2023-32-7-34-39