Issues of Safety of Herb Mixes and Food Supplements Contaminated with Tropane Alkaloids: A Review
https://doi.org/10.35627/2219-5238/2022-30-4-54-62
Abstract
Background: Nutritional supplements, herbal assemblages, and herbal teas are of particular interest in the global market of specialized food products, with the issues of a safe use becoming particularly relevant in the light of the reports on their potential contamination with tropane alkaloids, which content ranges from 0.01 % to 3 % depending on the type of raw materials.
Objective: Analysis of the safety of dietary supplements, herbs and herbal teas contaminated with tropane alkaloids, based on data currently presented in domestic and international scientific publications.
Materials and methods: We did a review of Russian and English language scientific literature published in 2001–2021, found on Scopus, PubMed and RSCI databases for tropane alkaloids. The initial sample included 49 articles, of which 19 articles were excluded following a primary analysis. The selection criteria included the presence of classification of tropane alkaloids, their contents in herbs and foods, methods of detection, and potential human health effects. We selected 30 full-text publications meeting the above criteria. The study results were systematized by the type of intervention.
Results: The analysis showed that the content of tropane alkaloids in some herbal teas by the sum of atropine and scopol-amine can exceed the established level of a single safe intake (0.016 µg/kg body weight). Since scopolamine is a derivative of hyoscyamine (atropine), safety of foods and raw materials should be assessed by their content of atropine that will allow effective monitoring of contamination with tropane alkaloids of all types of the specified food products for the purpose of their safe use.
Conclusion: For the safe use of herbal preparations and plant-based dietary supplements, it is recommended to monitor these types of food products for the presence of tropane alkaloids in them. It is advisable to develop a method for their analysis using high-performance liquid chromatography coupled with mass spectrometry.
Keywords
About the Authors
A. I. KorotkovaRussian Federation
Alena I. Korotkova, Food Hygienist
Food Hygiene Department
129626
Bldgs 2, 3 & 4 Grafsky Lane
109240
2/14 Ustyinsky Driveway
Moscow
O. V. Bagryantseva
Russian Federation
Olga V. Bagryantseva, Dr. Sci. (Biol.), Leading Researcher, Professor
Laboratory of Food Toxicology and Safety Assessment of Nanotechnologies
Institute of Vocational Training
Department of Food Hygiene and Toxicology
109240
2/14 Ustyinsky Driveway
119048
Bldg 2, 8 Trubetskaya Street
Moscow
I. E. Sokolov
Russian Federation
Ilya E. Sokolov, Junior Researcher
Laboratory of Food Toxicology and Safety Assessment of Nanotechnologies
109240
2/14 Ustyinsky Driveway
Moscow
V. M. Glinenko
Russian Federation
Victor M. Glinenko, Dr. Sci. (Med.), Professor, Head of the Department
Department of General Hygiene
127473
20 Delegatskaya Street
Moscow
References
1. Soulaidopoulos S., Sinakos E., Dimopoulou D., Vettas C., Cholongitas E., Garyfallos A. Anticholinergic syndrome induced by toxic plants. World J Emerg Med. 2017; 8 (4): 297-301. doi: 10.5847/wjem.j.1920-8642.2017.04.009
2. Chan T. Y. K. Worldwide occurrence and investigations of contamination of herbal medicines by tropane alkaloids. Toxins (Basel). 2017; 9 (9): 284. doi: 10.3390/toxins9090284
3. European Food Safety Authority (EFSA); Arcella D., Altieri A., Horváth Z. Human acute exposure assessment to tropane alkaloids. EFSA J. 2018;16 (2): e05160. doi: 10.2903/j.efsa.2018.5160
4. Kim N., Estrada O., Chavez B., Stewart C., D’Auria J. C. Tropane and granatane alkaloid biosynthesis: A systematic analysis. Molecules. 2016; 21 (11): 1510. doi: 10.3390/molecules21111510
5. Stratton J., Clough J., Leon I., Sehlanova M., MacDonald S. Monitoring of Tropane Alkaloids in Food: Final Report. FS 102116. Fera Science Ltd.; 2017. Accessed April 25, 2022. https://www.food.gov.uk/sites/default/files/media/document/fs102116finalreport.pdf
6. Philipov S., Doncheva T. Alkaloids derived from ornithine: Tropane alkaloids. In: Ramawat K., Mérillon J. M., eds. Natural Products. Springer, Berlin, Heidelberg; 2013: 343-358. doi: 10.1007/978-3-642-22144-6_8
7. Cinelli M. A., Jones A. D. Alkaloids of the Genus Datura: Review of a rich resource for natural product discovery. Molecules. 2021; 26 (9): 2629. doi: 10.3390/molecules26092629
8. Golovkin B. N., Rudenskaya R. N., Trofimova I. A., Schroeter A. I., Semikhov V. F. [Biologically Active Substances of Plant Origin.] Vol. 1. Moscow: Nauka Publ.; 2001. (In Russ.)
9. Compendium of botanicals reported to contain naturally occuring substances of possible concern for human health when used in food and food supplements. EFSA J. 2012; 10 (5): 2663. doi: 10.2903/j.efsa.2012.2663
10. Mulder P., de Nijs M., Castellari M., et al. Occurrence of tropane alkaloids in food. EFSA Support Publ. 2016; 13 (12): 1140E. doi: 10.2903/sp.efsa.2016.EN-1140
11. Bagryantseva O. V., Sokolov I. E., Kolobanov A.I., Elizarova E.V., Khotimchenko S. A. On the regulate tropane alkaloids in grain products. Voprosy Pitaniya. 2020; 89 (3): 54-61. (In Russ.) doi: 10.24411/0042-8833-2020-10029
12. EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Tropane alkaloids in food and feed. EFSA J. 2013; 11 (10): 3386. doi: 10.2903/j.efsa.2013.3386
13. European Food Safety Authority (EFSA); Arcella D.,Altieri A., Horváth Z. Human acute exposure assessment to tropane alkaloids. EFSA J. 2018; 16 (2): e05160. doi: 10.2903/j.efsa.2018.5160
14. Eguchi R., Ono N., Hirai Morita A., et al. Classification of alkaloids according to the starting substances of their biosynthetic pathways using graph convolutional neural networks. BMC Bioinformatics. 2019; 20 (1): 380. doi: 10.1186/s12859-019-2963-6
15. Kerchner A., Farkas А. Worldwide poisoning potential of Brugmansia and Datura. Forensic Toxicol. 2020; 38: 30-41. doi: 10.1007/s11419-019-00500-2
16. Sharma M., Dhaliwal I., Rana K., Delta A. K., Kaushik P. Phytochemistry, pharmacology, and toxicology of Datura Species – A review. Antioxidants (Basel). 2021; 10 (8): 1291. doi: 10.3390/antiox10081291
17. Gonçalves J., Luís В., Gallardo E., Duarte A. P. Psychoactive substances of natural origin: Toxicological aspects, therapeutic properties and analysis in biological samples. Molecules. 2021; 26 (5): 1397. doi: 10.3390/molecules26051397
18. Nachum Z., Shahal B., Shupak A., et al. Scopolamine bioavailability in combined oral and transdermal delivery. J Pharmacol Exp Ther. 2001; 296 (1): 121-123.
19. Gonçalves C., Cubero-Leon E., Stroka J. Determination of tropane alkaloids in cereals, tea and herbal infusions: Exploiting proficiency testing data as a basis to derive interlaboratory performance characteristics of an improved LC-MS/MS method. Food Chem. 2020; 331: 127260. doi: 10.1016/j.foodchem.2020.127260
20. Romera-Torres A., Romero-González R., Martínez Vidal J. L., Frenich A. G. Simultaneous analysis of tropane alkaloids in teas and herbal teas by liquid chromatography coupled to high-resolution mass spectrometry (Orbitrap). J Sep Sci. 2018; 41 (9): 1938-1946. doi: 10.1002/jssc.201701485
21. Debnath B., Singh W. S, Das M., et al. Role of plant alkaloids on human health: A review of biological activities. Mater Today Chem. 2018; 9: 56-72; doi: 10.1016/j.mtchem.2018.05.001
22. Kohnen-Johannsen K. L., Kayser O. Tropane alkaloids: Chemistry, pharmacology, biosynthesis and Production. Molecules. 2019; 24 (4): 796. doi: 10.3390/molecules24040796
23. Park L., Furey M., Nugent A. C., et al. Neurophysiological changes associated with antidepressant response to ketamine not observed in a negative trial of scopolamine in major depressive disorder. Int J Neuropsychopharmacol. 2019; 22 (1): 10-18. doi: 10.1093/ijnp/pyy051
24. Marín-Sáez J., Romero-González R., Garrido Frenich A. Multi-analysis determination of tropane alkaloids in cereals and solanaceaes seeds by liquid chromatography coupled to single stage Exactive-Orbitrap. J Chromatogr A. 2017; 1518: 46-58. doi: 10.1016/j.chroma.2017.08.052
25. Shimshoni J. A., Duebecke A., Mulder P. P., Cuneah O., Barel S. Pyrrolizidine and tropane alkaloids in teas and the herbal teas peppermint, rooibos and chamomile in the Israeli market. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015; 32 (12): 2058-2067. doi: 10.1080/19440049.2015.1087651
26. Vaclavik L., Krynitsky A. J., Rader J. I. Targeted analysis of multiple pharmaceuticals, plant toxins and other secondary metabolites in herbal dietary supplements by ultra-high performance liquid chromatography-qu-adrupole-orbital ion trap mass spectrometry. Anal Chim Acta. 2014; 810: 45-60. doi: 10.1016/j.aca.2013.12.006
27. Chan W. S., Wong G. F., Hung C. W., et al. Interpol review of toxicology 2016–2019. Forensic Sci Int Synerg. 2020; 2: 563-607. doi: 10.1016/j.fsisyn.2020.01.018
28. Jones N. S., Comparin J. H. Interpol review of controlled substances 2016–2019. Forensic Sci Int Synerg. 2020; 2: 608-669. doi: 10.1016/j.fsisyn.2020.01.019
29. Zheng W., Yoo K. H., Choi J. M., et al. A modified QuE-ChERS method coupled with liquid chromatography-tandem mass spectrometry for the simultaneous detection and quantification of scopolamine, L-hyoscyamine, and sparteine residues in animal-derived food products. J Adv Res. 2018; 15: 95-102. doi: 10.1016/j.jare.2018.09.004
30. Dzuman Z., Jonatova P., Stranska-Zachariasova M., et al. Development of a new LC-MS method for accurate and sensitive determination of 33 pyrrolizidine and 21 tropane alkaloids in plant-based food matrices. Anal Bioanal Chem. 2020; 412 (26): 7155-7167. doi: 10.1007/s00216-020-02848-6
Review
For citations:
Korotkova A.I., Bagryantseva O.V., Sokolov I.E., Glinenko V.M. Issues of Safety of Herb Mixes and Food Supplements Contaminated with Tropane Alkaloids: A Review. Public Health and Life Environment – PH&LE. 2022;(4):54-62. (In Russ.) https://doi.org/10.35627/2219-5238/2022-30-4-54-62