Preview

Public Health and Life Environment – PH&LE

Advanced search

Nanotechnologies in the light of modern antibacterial strategies: A review

https://doi.org/10.35627/2219-5238/2021-338-5-67-77

Abstract

Introduction: The emergence and growth of multidrug-resistant (MDR) bacterial strains in recent decades is associated with the widespread and uncontrolled use of antibiotics, as well as a decrease in the number of effective studies and discoveries of new classes of antibacterial drugs. These alarming trends are recognized as a major threat to global public health. They stimulate and increase the relevance of a large-scale search and study of new antimicrobial strategies, alternative to traditional antibiotic therapy. The purpose of the review is a critical analysis of advantages and limitations of modern antimicrobial platforms with an emphasis on innovative techniques of using nanoparticles for a direct or indirect effect on pathogenic bacteria, including the MDR ones. Materials and methods: The search for literary sources published in 2017–2021 was carried out in the resources of the Cochrane Library (Wiley Online Library directory), EMBASE (EMBASE.com), CINAHL, and Web of Science. Results: Most positive therapeutic effects for the diagnosis and treatment of infectious diseases were obtained by implementing fundamentally new mechanisms of antimicrobial activity of nanosized particles and other nanomaterials. When assessing future prospects of nanotechnology as the most dynamically and actively developing and promising recent antimicrobial strategy, it should be concluded that these innovative platforms certainly merit attention and further study as alternative means of preventing and treating bacterial infections. The main limitation for the clinical use of modern nanomaterials is the need for further assessment of their safety and cytotoxicity. Conclusions: Tackling antibiotic resistance requires the concerted action of community and government institutions. The development of safe and effective antibacterial technologies should be accompanied by adoption of an international program of strict regulation and tough measures of control over validity and rational use of antibiotics and other antibacterial drugs in medicine, cosmetology, and agriculture.

About the Author

B. G. Andryukov
Somov Research Institute of Epidemiology and Microbiology; School of Biomedicine, Far Eastern Federal University
Russian Federation

Boris G. Andryukov, Honored Doctor of the Russian Federation, D.M.Sc., Leading Researcher, Laboratory of Molecular Microbiology, Somov Research Institute of Epidemiology and Microbiology of the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)

1 Selskaya Street, Vladivostok, 690087



References

1. World Health Organization. WHO antibacterial preclinical pipeline review. April 2021. Accessed on May 12, 2021. https://www.who.int/observatories/global-observatoryon-health-research-and-development/monitoring/who-antibacterial-preclinical-pipeline-review

2. Munir MU, Ahmed A, Usman M, Salman S. Recent advances in nanotechnology-aided materials in combating microbial resistance and functioning as antibiotics substitutes. Int J Nanomedicine. 2020;15:7329–7358. doi: 10.2147/IJN.S265934

3. Natan M, Banin E. From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol Rev. 2017;41(3):302– 322. doi: 10.1093/femsre/fux003

4. Theuretzbacher U, Gottwalt S, Beyer P, et al. Analysis of the clinical antibacterial and antituberculosis pipeline. Lancet Infect Dis. 2019;19(2):e40–e50. doi: 10.1016/S1473-3099(18)30513-9

5. Cattoir V, Felden B. Future antibacterial strategies: from basic concepts to clinical challenges. J Infect Dis. 2019;220(3):350–360. doi: 10.1093/infdis/jiz134

6. Rios AC, Moutinho CG, Pinto FC, et al. Alternatives to overcoming bacterial resistances: State-of-the-art. Microbiol Res. 2016;191:51–80. doi: 10.1016/j.micres.2016.04.008

7. Vuong C, Yeh AJ, Cheung GY, Otto M. Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin Investig Drugs. 2016;25(1):73–93. doi: 10.1517/13543784.2016.1109077

8. Xu XL, Kang XQ, Qi J, Jin FY, Liu D, Du YZ. Novel antibacterial strategies for combating bacterial multidrug resistance. Curr Pharm Des. 2019;25(44):4717–4724. doi: 10.2174/1381612825666191022163237

9. Wang Y, Yang Y, Shi Y, Song H, Yu C. Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv Mater. 2020;32(18):e1904106. doi: 10.1002/adma.201904106.

10. Pontes DS, de Araujo RSA, Dantas N, et al. Genetic mechanisms of antibiotic resistance and the role of antibiotic adjuvants. Curr Top Med Chem. 2018;18(1):42–74. doi: 10.2174/1568026618666180206095224

11. Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016;4(2):10.1128/microbiolspec. VMBF-0016-2015. doi: 10.1128/microbiolspec.VMBF-0016-2015

12. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42–51. doi: 10.1038/nrmicro3380

13. Andryukov BG, Somova LM, Timchenko NF, Bynina MP, Lyapun IN. Toxin–antitoxin systems and their role in maintaining the pathogenic potential of causative agents of sapronoses. Infect Disord Drug Targets. 2020;20(5):570–584. doi: 10.2174/1871526519666190715150444

14. Mantravadi PK, Kalesh KA, Dobson RCJ, Hudson AO, Parthasarathy A. The quest for novel antimicrobial compounds: emerging trends in research, development, and technologies. Antibiotics (Basel). 2019;8(1):8. doi: 10.3390/antibiotics8010008

15. Karmakar P, Gaitonde V. Promising recent strategies with potential clinical translational value to combat antibacterial resistant surge. Medicines (Basel). 2019;6(1):21. doi: 10.3390/medicines6010021

16. Parmar A, Iyer A, Prior SH, et al. Teixobactin analogues reveal enduracididine to be non-essential for highly potent antibacterial activity and lipid II binding. Chem Sci. 2017;8(12):8183–8192. doi: 10.1039/c7sc03241b

17. Gunjal VB, Thakare R, Chopra S, Reddy DS. Teixobactin: A paving stone toward a new class of antibiotics? J Med Chem. 2020;63(21):12171–95. doi: 10.1021/acs.jmedchem.0c00173

18. Martinet L, Naômé A, Deflandre B, et al. A single biosynthetic gene cluster is responsible for the production of bagremycin antibiotics and ferroverdin iron chelators. mBio. 2019;10(4):e01230–19. doi: 10.1128/mBio.01230-19

19. Okano A, Isley NA, Boger DL. Peripheral modifications of [Ψ[CH2NH]Tpg4]vancomycin with added synergistic mechanisms of action provide durable and potent antibiotics. Proc Natl Acad Sci U S A. 2017;114(26):E5052–E5061. doi: 10.1073/pnas.1704125114

20. Endres BT, Bassères E, Alam MJ, Garey KW. Cadazolid for the treatment of Clostridium difficile. Expert Opin Investig Drugs. 2017;26(4):509–514. doi: 10.1080/13543784.2017.1304538

21. Muhammad A, Simcha W, Rawish F, Sabih R, Albert E, Ali N. Cadazolid vs vancomycin for the treatment of Clostridioides difficile infection: Systematic review with meta-analysis. Curr Clin Pharmacol. 2020;15(1):4–10. doi: 10.2174/1574884714666190802124301

22. Fabijan AP, Khalid A, Maddocks S, et al. Phage therapy for severe bacterial infections: a narrative review. Med J Aust. 2020;212(6):279–285. doi: 10.5694/mja2.50355

23. Düzgüneş N, Sessevmez M, Yildirim M. Bacteriophage therapy of bacterial infections: The rediscovered frontier. Pharmaceuticals (Basel). 2021;14(1):34. doi: 10.3390/ph14010034

24. Mondal SI, Draper LA, Ross RP, Hill C. Bacteriophage endolysins as a potential weapon to combat Clostridioides difficile infection. Gut Microbes. 2020;12(1):1813533. doi: 10.1080/19490976.2020.1813533

25. Bae JY, Jun KI, Kang CK, et al. Efficacy of intranasal administration of the recombinant endolysin SAL200 in a lethal murine Staphylococcus aureus pneumonia model. Antimicrob Agents Chemother. 2019;63(4):e02009–18. doi: 10.1128/AAC.02009-18

26. Atkins KE, Flasche S. Vaccination to reduce antimicrobial resistance. Lancet Glob Health. 2018;6(3):e252. doi: 10.1016/S2214-109X(18)30043-3

27. Ginsburg AS, Klugman KP. Vaccination to reduce antimicrobial resistance. Lancet Glob Health. 2017; 5(12):e1176–e1177. doi: 10.1016/S2214-109X(17)30364-9

28. Hashempour-Baltork F, Hosseini H, Shojaee-Aliabadi S, Torbati M, Alizadeh AM, Alizadeh M. Drug resistance and the prevention strategies in food borne bacteria: An update review. Adv Pharm Bull. 2019;9(3):335–347. doi: 10.15171/apb.2019.041

29. DiGiandomenico A, Sellman BR. Antibacterial monoclonal antibodies: the next generation? Curr Opin Microbiol. 2015;27:78–85. doi: 10.1016/j.mib.2015.07.014

30. Ooijevaar RE, van Beurden YH, Terveer EM, et al. Update of treatment algorithms for Clostridium difficile infection. Clin Microbiol Infect. 2018;24(5):452–462. doi: 10.1016/j.cmi.2017.12.022

31. Nagy E, Nagy G, Power CA, Badarau A, Badarau A, Szijártó V. Anti-bacterial monoclonal antibodies. Adv Exp Med Biol. 2017;1053:119–153. doi: 10.1007/978-3-319-72077-7_7

32. Wilcox MH, Gerding DN, Poxton IR, et al., MODIFY I and MODIFY II Investigators. Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N Engl J Med. 2017;376(4):305–317. doi: 10.1056/NEJMoa1602615.

33. Fry DE. Antimicrobial peptides. Surg Infect (Larchmt). 2018;19(8):804–811. doi: 10.1089/sur.2018.194

34. Mahlapuu M, Björn C, Ekblom J. Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit Rev Biotechnol. 2020;40(7):978–992. doi: 10.1080/07388551.2020.1796576

35. Di Somma A, Moretta A, Canè C, Cirillo A, Duilio A. Antimicrobial and antibiofilm peptides. Biomolecules. 2020;10(4):652. doi: 10.3390/biom10040652

36. Chung PY, Khanum R. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect. 2017;50(4):405–410. doi: 10.1016/j.jmii.2016.12.005

37. Ferreirinha P, Pérez-Cabezas B, Correia A, et al. Poly-N-Acetylglucosamine production by Staphylococcus epidermidis cells increases their in vivo proinflammatory effect. Infect Immun. 2016;84(10):2933–43. doi: 10.1128/IAI.00290-16

38. Soliman C, Walduck AK, Yuriev E, et al. Structural basis for antibody targeting of the broadly expressed microbial polysaccharide poly-N-acetylglucosamine. J Biol Chem. 2018;293(14):5079–5089. doi: 10.1074/jbc.RA117.001170

39. Raffatellu M. Learning from bacterial competition in the host to develop antimicrobials. Nat Med. 2018;24(8):1097– 1103. doi: 10.1038/s41591-018-0145-0

40. Stubbendieck RM, Straight PD. Multifaceted interfaces of bacterial competition. J Bacteriol. 2016;198(16):2145–55. doi: 10.1128/JB.00275-16

41. Colameco S, Elliot MA. Non-coding RNAs as antibiotic targets. Biochem Pharmacol. 2017;133:29–42. doi: 10.1016/j.bcp.2016.12.015

42. Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014;23(R1):R40–6. doi: 10.1093/hmg/ddu125

43. Bikard D, Euler CW, Jiang W, et al. Exploiting CRISPRCas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32(11):1146–50. doi: 10.1038/nbt.3043

44. Joshi AS, Singh P, Mijakovic I. Interactions of gold and silver nanoparticles with bacterial biofilms: molecular interactions behind inhibition and resistance. Int J Mol Sci. 2020;21(20):7658. doi: 10.3390/ijms21207658

45. Vallet-Regí M, González B, Izquierdo-Barba I. Nanomaterials as promising alternative in the infection treatment. Int J Mol Sci. 2019;20(15):3806. doi: 10.3390/ijms20153806

46. Santos LM, Stanisic D, Menezes UJ, et al. Biogenic silver nanoparticles as a post-surgical treatment for Corynebacterium pseudotuberculosis infection in small ruminants. Front Microbiol. 2019;10:824. doi: 10.3389/fmicb.2019.00824

47. Tripathy A, Pahal S, Mudakavi RJ, Raichur AM, Var-ma MM, Sen P. Impact of bioinspired nanotopography on the antibacterial and antibiofilm efficacy of chitosan. Biomacromolecules. 2018;19(4):1340–1346. doi: 10.1021/acs.biomac.8b00200

48. Xia MY, Xie Y, Yu CH, et al. Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. J Control Release. 2019;307:16–31. doi: 10.1016/j.jconrel.2019.06.011

49. Bonilla-Gameros L, Chevallier P, Sarkissian A, Mantovani D. Silver-based antibacterial strategies for healthcareassociated infections: Processes, challenges, and regulations. An integrated review. Nanomedicine. 2020;24:102142. doi: 10.1016/j.nano.2019.102142

50. Gupta A, Holoidovsky L, Thamaraiselvan C, et al. Silver-doped laser-induced graphene for potent surface antibacterial activity and anti-biofilm action. Chem Commun (Camb). 2019;55(48):6890–6893. doi: 10.1039/c9cc02415


Review

For citations:


Andryukov B.G. Nanotechnologies in the light of modern antibacterial strategies: A review. Public Health and Life Environment – PH&LE. 2021;(5):67-77. https://doi.org/10.35627/2219-5238/2021-338-5-67-77

Views: 579


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-5238 (Print)
ISSN 2619-0788 (Online)