The Role of Soluble Molecules CD25, CD38, and CD95 in the Development of Immunosuppression in Cytomegalovirus Infection
https://doi.org/10.35627/2219-5238/2021-337-4-74-78
Abstract
Introduction: Cytomegalovirus (CMV) infection is a common beta-herpesvirus infection widely spread in the human population. The proportion of infected population increases with age and approaches 100 % in elderly people. The infection is usually latent but is capable of reactivation when immunosuppression develops. The mechanisms of reactivation are not fully understood. The objective of our study was to evaluate the role of soluble molecules CD25, CD38, CD95 in the development of immunosuppression in CMV infection. Materials and methods: We used 18 serum samples from cases of CMV disease in the stage of reactivation, all confirmed by clinical and laboratory data. The patients received treatment in Nizhny Novgorod Infectious Disease Hospital No. 2. The serum content of the total and oligomeric soluble molecules CD25, CD38, and CD95 was identified by ELISA using monoclonal and polyclonal antibodies against human peripheral blood mononuclear cell proteins. The results were recorded spectrophotometrically and evaluated by converting optical density units to conventional units (U/mL). Results: We established an increase in the serum content of total and oligomeric fractions of soluble molecules CD25, CD38, and CD95 in the cases of CMV disease. While the serum content of the total and oligomeric fractions of molecules CD25 and CD38 increased equally, the oligomeric fraction of molecules СD95 demonstrated a more pronounced increase compared to the total fraction of these molecules. Our findings suggest the immune response suppression mechanism associated with initiation of apoptosis of effector T lymphocytes involving oligomeric form of molecules CD95. Conclusion: Changes in the content, structural and functional state of soluble differentiating molecules CD25, CD38, and CD95 indicate their involvement in immunosuppression mechanisms in patients with CMV infection.
About the Authors
V. V. NovikovRussian Federation
Viktor V. Novikov, D.Biol.Sc., Professor, Head of the Laboratory of Immunochemistry
71 Malaya Yamskaya Street, Nizhny Novgorod, 603950
23 Gagarin Avenue, Nizhny Novgorod, 603950
G. A. Kravchenko
Russian Federation
Galina A. Kravchenko, Candidate of Biological Sciences, Associate Professor, Department of Molecular Biology and Immunology
23 Gagarin Avenue, Nizhny Novgorod, 603950
D. M. Sobchak
Russian Federation
Devora M. Sobchak, D.M.Sc., Professor, Department of Infectious Diseases
10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005
D. V. Novikov
Russian Federation
Dmitry V. Novikov, Candidate of Biological Sciences, Associate Professor
71 Malaya Yamskaya Street, Nizhny Novgorod, 603950
S. V. Shumilova
Russian Federation
Svetlana V. Shumilova, Candidate of Biological Sciences, Senior Researcher, Institute of Biology and Biomedicine
23 Gagarin Avenue, Nizhny Novgorod, 603950
References
1. Ziemann M, Thiele T. Transfusion-transmitted CMV infection – current knowledge and future perspectives. Transfus Med. 2017; 27(4):238–248. doi: 10.1111/tme.12437
2. Dioverti MV, Razonable RR. Cytomegalovirus. Microbiol Spectr. 2016;4(4). doi: 10.1128/microbiolspec.DMIH20022-2015
3. Silva JM, Pinheiro-Silva R, Dhyani A, Pontes GS. Cytomegalovirus and Epstein-Barr infections: prevalence and impact on patients with hematological diseases. Biomed Res Int. 2020;2020:1627824. doi: 10.1155/2020/1627824
4. Vauloup-Fellous C, Berth M, Heskia F, Dugua JM, Grangeot-Keros L. Re-evaluation of the VIDAS (®) cytomegalovirus (CMV) IgG avidity assay: determination of new cut-off values based on the study of kinetics of CMV-IgG maturation. J Clin Virol. 2013;56(2):118–23. doi: 10.1016/j.jcv.2012.10.017
5. Kabani N, Ross SA. Congenital cytomegalovirus infection. J Infect Dis. 2020;5:221(Suppl 1):S9–S14. doi: 10.1093/infdis/jiz446
6. Lindemann M, Korth J, Sun M, Xu S, Struve C, Werner K, et al. The cytomegalovirus-specific IL-21 ELISpot correlates with allograft function of kidney transplant recipients. Int J Mol Sci. 2018;19(12):3945. doi: 10.3390/ijms19123945
7. Leruez-Ville M, Foulon I, Pass R, Ville Y. Cytomegalovirus infection during pregnancy: state of the science. Am J Obstet Gynecol. 2020;223(3):330–349. doi: 10.1016/j.ajog.2020.02.018
8. Afshari A, Yaghobi R, Karimi MH, Darbouy M, Azarpira N, Geramizadeh B, et al. IL-17 mRNA expression and cytomegalovirus infection in liver transplant patients. Exp Clin Transplant. 2015;13(Suppl 1):83–89.
9. Dornieden T, Wilde B, Korth J, Werner K, Horn PA, Witzke O, et al. Enhancement of cytomegalovirusspecific cytokine production after modulation of the costimulation in kidney transplant patients. J Immunol Res. 2019;2019:3926175. doi: 10.1155/2019/3926175
10. Klenerman P, Oxenius A. T cell responses to cytomegalovirus. Nat Rev Immunol. 2016;16(6):367–77. doi: 10.1038/nri.2016.38
11. Lebedev MJu, Sholkina MN, Novikov DV, Shumilova SV, Novikov VV, Karaulov AV. Soluble CD25 and CD95 molecules level at burns. Vestnik Rossiyskoy Akademii Meditsinskikh Nauk. 2017;72(4):276–281. (In Russian). doi: 10.15690/vramn772
12. Ma A, Zhang L, Ye X, Chen J, Yu J, Zhuang L, et al. High levels of circulating IL-8 and soluble IL-2R are associated with prolonged illness in patients with severe COVID-19. Front Immunol. 2021;12:626235. doi: 10.3389/fimmu.2021.626235
13. Vanmaris RMM, Rijkers GT. Biological role of the soluble interleukin-2 receptor in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2017;34(2):122–129. doi: 10.36141/svdld.v34i2.5369
14. Sun HL, Ma CJ, Du XF, Yang S-Y, Lv X, Zhao H, et al. Soluble IL-2Rα correlates with imbalances of Th1/ Th2 and Tc1/Tc2 cells in patients with acute brucellosis. Infect Dis Poverty. 2020;9(1):92. doi: 10.1186/s40249-02000699-y
15. Marcante R, Cavedon G. Soluble CD4, CD8 and interleukin-2 receptor levels in patients with acute cytomegalovirus mononucleosis syndrome. Allergol Immunopathol (Madr). 1991;19(3):99–102.
16. Zedtwitz-Liebenstein K, Diab-Elschahaw M, Frass M. Human cytomegalovirus infection in nonimmunocompromised patients: a retrospective analysis and review of the literature. Intervirology. 2016;59(3):159–162. doi: 10.1159/000454772
17. Da Cunha T, Wu GY. Cytomegalovirus hepatitis in immunocompetent and immunocompromised hosts. J Clin Transl Hepatol. 2021;9(1):106–115. doi: 10.14218/JCTH.2020.00088
18. Komura T, Kagaya T, Takayama H, Yanagi M, Yoshio T, Sugimoto S, et al. Clinical features and dynamics of T cells-related markers in immunocompetent patients with cytomegalovirus hepatitis. Can J Gastroenterol Hepatol. 2020;2020:8874620. doi: 10.1155/2020/8874620
19. Novikov VV, Makarova EV, Shumilova SV, Krasnogorova NV, Varvarina GN. Soluble differentiation molecules as biomarkers in COPD. Allergologiya i Immunologiya. 2017;18(3):157–160. (In Russian).
20. Novikov VV, Evsegneeva IV. New human differentiation antigens adopted at the VII International Workshop. Rossiyskiy Bioterapevticheskiy Zhurnal. 2003; 2(3):3–6. (In Russian).
21. Lebedev MJu, Egorova NI, Sholkina MN, Vilkov SA, Baryshnikov AJu, Novikov VV. Serum levels of different forms of soluble CD38 antigen in burned patients. Burns. 2004;30(6):552–556. doi: 10.1016/j.burns.2004.01.029
22. Golenkov AK, Mitina TA, Novikov VV, Tagirov OT, Koroleva VV, Kryzhanov MA, et al. [Clinical significance of soluble adhesion molecules (sCD50 ICAM-3), apoptosis (sCD95) and sHLA class I in lymphoproliferative diseases.] Rossiyskiy Bioterapevticheskiy Zhurnal. 2002;1(1):60–64. (In Russian).
23. Vincent FB, Kandane-Rathnayake R, Koelmeyer R, et al. Associations of serum soluble Fas and Fas ligand (FasL) with outcomes in systemic lupus erythematosus. Lupus Sci Med. 2020;7(1):e000375. doi: 10.1136/lupus-2019-000375
24. Ptitsina YuS, Bornyakova LA, Baryshnikov AYu, Martynova TG, Kryzhanova MA, Novikov VV. A soluble form of FAS/APO-1(CD95) antigen in the serum of viral hepatitis patients. International Journal on Immunorehabilitation. 1999;(14):110.
25. Wang Y, Liu Y, Han R, Li Q, Yao Z, Niu W, et al. Monitoring of CD95 and CD38 expression in peripheral blood T lymphocytes during active human cytomegalovirus infection after orthotopic liver transplantation. J Gastroenterol Hepatol. 2010;25(1):138–42. doi: 10.1111/j.14401746.2009.05966.x
Review
For citations:
Novikov V.V., Kravchenko G.A., Sobchak D.M., Novikov D.V., Shumilova S.V. The Role of Soluble Molecules CD25, CD38, and CD95 in the Development of Immunosuppression in Cytomegalovirus Infection. Public Health and Life Environment – PH&LE. 2021;(4):74-78. https://doi.org/10.35627/2219-5238/2021-337-4-74-78