The Use of the MiDA Software for Establishing Molecular Genetic Markers of the Risk of Developing Infectious Disease Complications
https://doi.org/10.35627/2219-5238/2020-322-1-51-56
Abstract
About the Authors
Elena FilatovaRussian Federation
N. A. Sakharnov
Russian Federation
D. I. Knyazev
Russian Federation
N. B. Presnyakova
Russian Federation
O. V. Utkin
Russian Federation
References
1. Железникова Г.Ф. Инфекция и иммунитет: стратегии обеих сторон. Медицинская Иммунология. 2006. Т. 8. № 5-6. С. 597-614. II. Логвиненко О.В., Ракитина Е.Л., Пономаренко Д.Г. и др. Особенности иммунологических показателей крови у больных различными формами бруцеллеза. Инфекция и иммунитет. 2013. Т. 3. № 3. С. 275-278.
2. Cao Z, Wang Y, Sun Y, et al. Effective and stable feature selection method based on filter for gene signature identification in paired microarray data [abstract]. 2013 IEEE International Conference on Bioinformatics and Biomedicine. 2013. P. 189-192.
3. McCarthy DJ, Smyth GK. Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics. 2009; 25(6):765-71. DOI:10.1093/bioinformatics/btp053
4. Adewale AJ, Dinu I, Yasui Y. Boosting for correlated binary classification. J Comput Graph Stat. 2010; 19(1):140-153.
5. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors). Ann Statist. 2000; 28(2):337-407.
6. Mieth B, Kloft M, Rodriguez JA, et al. Combining multiple hypothesis testing with machine learning increases the statistical power of genome-wide association studies. Sci Rep. 2016; 6:36671. DOI:10.1038/srep36671
7. Huggins CE, Domenighetti AA, Ritchie ME, et al. Functional and metabolic remodelling in GLUT4-deficient hearts confers hyper-responsiveness to substrate intervention. J Mol Cell Cardiol. 2008; 44(2):270-80. DOI:10.1016/ j.yjmcc.2007.11.020
8. Jeffery IB, Higgins DG, Culhane AC. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinformatics. 2006; 7:359. DOI:10.1186/1471-2105-7-359
9. Pirooznia M, Yang JY, Yang MQ, et al. A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics. 2008; 9(Suppl 1):S13. DOI:10.1186/1471-2164-9-S1-S13
10. Kondrikov D, Fulton D, Dong Z, et al. Heat shock protein 70 prevents hyperoxia-induced disruption of lung endothelial barrier via caspase-dependent and AIF-dependent pathways. PLoS One. 2015; 10(6):e0129343. DOI:10.1371/journal. pone.0129343
11. Wei D, Miao Y, Yu L, et al. Downregulation of microRNA-198 suppresses cell proliferation and invasion in retinoblastoma by directly targeting PTEN. Mol Med Rep. 2018; 18(1):595-602. DOI: 10.3892/mmr.2018.8979
12. Yi L, Yuan Y. MicroRNA-618 modulates cell growth via targeting PI3K/Akt pathway in human thyroid carcinomas. Indian J Cancer. 2015; 52(Suppl 3):E186-189. DOI: 10.4103/0019-509X.186577
13. Zhang CG, Yang F, Li YH, et al. miR-501-3p sensitizes glioma cells to cisplatin by targeting MYCN. Mol Med Rep. 2018; 18(5):4747-4752. DOI: 10.3892/mmr.2018.9458
14. Song L, Ara T, Wu HW, et al. Oncogene MYCN regulates localization of NKT cells to the site of disease in neuroblastoma. J Clin Invest. 2007; 117(9):2702-12. DOI:10.1172/JCI30751
Review
For citations:
Filatova E., Sakharnov N.A., Knyazev D.I., Presnyakova N.B., Utkin O.V. The Use of the MiDA Software for Establishing Molecular Genetic Markers of the Risk of Developing Infectious Disease Complications. Public Health and Life Environment – PH&LE. 2020;(1):51-56. (In Russ.) https://doi.org/10.35627/2219-5238/2020-322-1-51-56