Prevalence of Genetic Markers of Tick-Borne Diseases in Ixodid Ticks Collected in Various Landscape Zones of the Tyumen Region and the Khanty-Mansi Autonomous Okrug
https://doi.org/10.35627/2219-5238/2025-33-10-66-73
Abstract
Introduction: The wide distribution of ixodid ticks and their ability to preserve and transmit pathogens of many viral and bacterial infections determine the relevance of this study.
Objective: To characterize the structure and prevalence of genetic markers of vector-borne pathogens in Dermacentor reticulatus and Ixodes persulcatus ticks collected from vegetation in the Tyumen Region and in the middle taiga subzone of the Khanty-Mansi Autonomous Okrug.
Materials and Methods: We conducted a retrospective 16-year analysis covering the epidemic seasons of the years 2004, 2007–2011, 2013, 2015–2018, and 2021–2025 and including 5,473 adult taiga (I. persulcatus (n = 2,742)) and meadow (D. reticulatus (n = 2,731)) ticks collected from vegetation in the Tyumen Region and the Khanty-Mansi Autonomous Okrug by flagging. Tick species and sex were established. The presence of genetic markers of tick-borne encephalitis virus (TBEV), ixodid tick-borne borreliosis (ITBB), human monocytic ehrlichiosis (HME), and human granulocytic anaplasmosis (HGA) was detected in unpooled ticks using the polymerase chain reaction. We calculated long-term rates, analyzed nominal variables using the Pearson’s χ² test, visualized and systematized data in Microsoft Excel. Statistical analysis was performed using licensed IBM SPSS Statistics 22.0.
Results: The long-term study of ixodid ticks showed that D. reticulatus ticks were usually found in urbanized areas and parks of the Tyumen city, less often in the subtaiga and northern forest-steppe subzones. I. persulcatus ticks prevailed in the southern taiga subzone of the Tyumen Region and the middle taiga of the Khanty-Mansi Autonomous Okrug. In 2015, taiga ticks were found in Tyumen for the first time. Females and males dominated among I. persulcatus and D. reticulatus ticks, respectively. We observed markers of HME in 27.8 % and those of ITBB in 26.8 % of the taiga ticks collected in the northern forest-steppe subzone. Borrelia and anaplasma DNAs were detected in 1.8 % and 0.4 % of the meadow ticks collected in Tyumen. The ITBB DNA was found in 59.5 %, HME DNA in 14.6 %, HGA in 16.4 %, and TBEV RNA in 5.9 % of the I. persulcatus ticks collected in the southern taiga subzone while those collected in the middle taiga zone usually contained ITBB DNA (46.5 %), HME DNA (15.7 %), and TBEV RNA (7.1 %).
Conclusions: The findings demonstrate the leading role of I. persulcatus ticks in maintaining the epidemic activity of natural foci in the northern forest-steppe and southern taiga zones of the Tyumen Region and the middle taiga subzone of the Khanty-Mansi Autonomous Okrug.
About the Authors
K. B. StepanovaRussian Federation
Kseniya B. Stepanova, Cand. Sci. (Med.), Director
147 Republic Street, Tyumen, 625026
T. F. Stepanova
Russian Federation
Tatyana F. Stepanova, Dr. Sci. (Med.), Prof., Chief Researcher
147 Republic Street, Tyumen, 625026
A. P. Rebeshchenko
Russian Federation
Anna P. Rebeshchenko, Еpidemiologist, Laboratory of Epidemiological Analysis and Mathematical Modeling
147 Republic Street, Tyumen, 625026
I. V. Bakshtanovskaya
Russian Federation
Irina V. Bakshtanovskaya, Cand. Sci. (Biol.), Scientific Secretary
147 Republic Street, Tyumen, 625026
S. A. Krotov
Russian Federation
Sergei A. Krotov, Junior Researcher, Environmental Monitoring Laboratory of Natural Focal Parasitoses
147 Republic Street, Tyumen, 625026
G. V. Plyshevskij
Russian Federation
Georgy V. Plyshevskij, Biologist
147 Republic Street, Tyumen, 625026
References
1. Malkhazova SM, Shatrova NV, Zelikhina SV, Orlov DS. Spatially heterogeneous distribution of tick-borne infections in the south of the Far East. Vestnik Moskovskogo Universiteta. Seriya 5. Geografiya. 2023;78(2):51-61. (In Russ.) doi: 10.55959/MSU0579-9414.5.78.2.5
2. Tolmacheva MI, Nikitin AYa, Andaev EI, Chumachenko IG. Dynamics of the epidemic process of tick-borne encephalitis in Irkutsk Region in 2001–2021. Problemy Osobo Opasnykh Infektsiy. 2023;(3):123-131. (In Russ.) doi: 10.21055/0370-1069-2023-3-123-131
3. Vetoshkina UV, Semushina OP, Leont’eva OYu, Sokolova OV. Tick-borne viral encephalitis in the Arkhangelsk Region during the COVID-19 pandemic. Zhurnal Mediko-Biologicheskikh Issledovaniy. 2023;11(1):63-73. (In Russ.) doi: 10.37482/2687-1491-Z129
4. Efimik VE, Telegina AA. To the study of ixodid ticks of the Bolshesosnovsky municipal district of the Perm Krai. Vestnik Permskogo Universiteta. Seriya: Biologiya. 2024;(3):269-277. (In Russ.) doi: 10.17072/1994-9952-2024-3-269-277
5. Kolyasnikova NM, Toporkova MG, Sanchez-Pimentel JP, et al. Etiological structure, clinical and epidemiological characteristics of infections transmitted by ixodic ticks in the Sverdlovsk region at the present stage. Epidemiologiya i Vaktsinoprofilaktika. 2023;22(1):38-58. (In Russ.) doi: 10.31631/2073-3046-2023-22-1-38-58
6. Estrada-Peña A, Jongejan F. Ticks feeding on humans: A review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp Appl Acarol. 1999;23(9):685-715. doi: 10.1023/a:1006241108739
7. Tupota NL, Ternovoi VA, Ponomareva EP, et al. Detection of the genetic material of the viruses Tacheng uukuvirus and Sarа tick phlebovirus in taiga ticks collected in the Sverdlovsk, Tomsk Regions and Primorsky Territory of Russia and their phylogeny. Problemy Osobo Opasnykh Infektsiy. 2023;(3):141-146. (In Russ.) doi: 10.21055/0370-1069-2023-3-141-146
8. Yastrebov VK, Khazova TG. The optimization of the system of epidemiological surveillance and prophylactic of the tick-borne viral encephalitis. Epidemiologiya i Vaktsinoprofilaktika. 2012;(1(62)):19-24. (In Russ.)
9. Voronkova OV, Romanenko VN, Simakova AV, et al. Analysis of multiple infection in ixodic ticks Dermacentor reticulatus in a combined natural focus of vector-borne infections in the Tomsk Region. Problemy Osobo Opasnykh Infektsiy. 2023;(2):106-111. (In Russ.) doi: 10.21055/0370-1069-2023-2-106-111
10. Andaev EI, Nikitin AYa, Tolmacheva MI, et al. Epidemiological situation on tick-borne viral encephalitis in the Russian Federation over the period of 2015–2024 and short-term incidence forecast for 2025. Problemy Osobo Opasnykh Infektsiy. 2025;(1):6-17. (In Russ.) doi: 10.21055/0370-1069-2025-1-6-17
11. Saveliev DA, Blokh AI, Rudakov NV. Improving methodological approaches to choosing strategies and tactics for the prevention of tick-borne infections based on risk-oriented differentiation of territories at the municipal level. Problemy Osobo Opasnykh Infektsiy. 2025;(2):160-166. (In Russ.) doi: 10.21055/0370-1069-2025-2-160-166
12. Volchev EG, Zotov SI. Influence of anthropogenic factors on the activity of ticks of the family Ixodidae: History of research in Russia. Vestnik Baltiyskogo Federal’nogo Universiteta im. I. Kanta. Seriya Estestvennye i Meditsinskie Nauki. 2024;(2):68-84. (In Russ.) doi: 10.5922/vestniknat-2024-2-5
13. Sirotkin MB. Conditions for the potential northward expansion of ranges of the main vectors of Lyme disease and tick-borne encephalitis (based on the example of the Magadan Region and Norway). Zdorov’e Naseleniya i Sreda Obitaniya. 2025;33(3):66-72. (In Russ.) doi: 10.35627/2219-5238/2025-33-3-66-72
14. Janzén T, Choudhury F, Hammer M, Petersson M, Dinnétz P. Ticks – public health risks in urban green spaces. BMC Public Health. 2024;24(1):1031. doi: 10.1186/s12889-024-18540-8
15. Tappe J, Jordan D, Janecek E, Fingerle V, Strube C. Revisited: Borrelia burgdorferi sensu lato infections in hard ticks (Ixodes ricinus) in the city of Hanover (Germany). Parasit Vectors. 2014;7:441. doi: 10.1186/1756-3305-7-441
16. Pawełczyk A, Bednarska M, Hamera A, et al. Long-term study of Borrelia and Babesia prevalence and co-infection in Ixodes ricinus and Dermacentor recticulatus ticks removed from humans in Poland, 2016–2019. Parasit Vectors. 2021;14(1):348. doi: 10.1186/s13071-021-04849-5
17. Sormunen JJ, Kulha N, Klemola T, Mäkelä S, Vesilahti EM, Vesterinen EJ. Enhanced threat of tick-borne infections within cities? Assessing public health risks due to ticks in urban green spaces in Helsinki, Finland. Zoonoses Public Health. 2020;67(7):823-839. doi: 10.1111/zph.12767
18. Buczek A, Ciura D, Bartosik K, Zając Z, Kulisz J. Threat of attacks of Ixodes ricinus ticks (Ixodida: Ixodidae) and Lyme borreliosis within urban heat islands in south-western Poland. Parasit Vectors. 2014;7:562. doi: 10.1186/s13071-014-0562-y
19. Kohn M, Krücken J, McKay-Demeler J, Pachnicke S, Krieger K, von Samson-Himmelstjerna G. Dermacentor reticulatus in Berlin/Brandenburg (Germany): Activity patterns and associated pathogens. Ticks Tick Borne Dis. 2019;10(1):191-206. doi: 10.1016/j.ttbdis.2018.10.003
20. Audino T, Pautasso A, Bellavia V, et al. Ticks infesting humans and associated pathogens: A cross-sectional study in a 3-year period (2017–2019) in northwest Italy. Parasit Vectors. 2021;14(1):136. doi: 10.1186/s13071-021-04603-x
21. Jumpertz M, Sevestre J, Luciani L, Houhamdi L, Fournier PE, Parola P. Bacterial agents detected in 418 ticks removed from humans during 2014–2021, France. Emerg Infect Dis. 2023;29(4):701-710. doi: 10.3201/eid2904.221572
22. Wilhelmsson P, Lindblom P, Fryland L, Ernerudh J, Forsberg P, Lindgren PE. Prevalence, diversity, and load of Borrelia species in ticks that have fed on humans in regions of Sweden and Åland Islands, Finland with different Lyme borreliosis incidences. PLoS One. 2013;8(11):e81433. doi: 10.1371/journal.pone.0081433
Supplementary files
Review
For citations:
Stepanova K.B., Stepanova T.F., Rebeshchenko A.P., Bakshtanovskaya I.V., Krotov S.A., Plyshevskij G.V. Prevalence of Genetic Markers of Tick-Borne Diseases in Ixodid Ticks Collected in Various Landscape Zones of the Tyumen Region and the Khanty-Mansi Autonomous Okrug. Public Health and Life Environment – PH&LE. 2025;33(10):66-73. (In Russ.) https://doi.org/10.35627/2219-5238/2025-33-10-66-73

.png)

























