Preview

Public Health and Life Environment – PH&LE

Advanced search

Detection of omic markers of the nervous system adverse effects in children with a combined exposure to airborne chemicals and conditions of educational environment

https://doi.org/10.35627/2219-5238/2020-326-5-12-17

Abstract

Introduction: The rationale of prognostic and predictive molecular biomarkers of malfunctioning of homeostatic control mechanisms is important for solving the tasks of early diagnosis and prevention of priority noncom-municable diseases. Our objective was to detect omic markers of adverse effects of a combined exposure to airborne contaminants and factors of educational environment on the nervous system of children. Materials and methods: We studied school outdoor and indoor concentrations of certain air pollutants, the intensity of the educational process, and plasma proteins characterizing nervous system adverse effects in children aged 7-10 with a combined exposure to various factors of educational environment in the primary school with various types of educational programs and hygienic conditions. Results: We established that blood manganese, nickel, lead, chromium, benzene, xylene, and phenol levels among the schoolchildren of the study group were 1.2-2.4 times higher than those in the control group. The phenol concentration in blood is a proven marker of the inhalation exposure. We also identified such violations of the educational process as uneven distribution of study loads, an increase in the maximum permissible load, a 1.2-fold increase in intellectual loads, shortening of the break between basic and optional classes, and a 1.5-fold increase in intensity of the training mode. We obtained mass spectra of the peptides reflecting changes in homeostasis on the molecular level. As a result of establishing a direct causal relationship between the increase in the relative mass of a Kazal-type 5 serine protease inhibitor, the increased blood phenol level, effects of intellectual loads, routine and distribution of the training load, the Kazal-type 5 serine protease inhibitor was proved to be an omic marker of the combined exposure to ambient phenol and the factors of educational environment. Conclusions: An increase in the relative mass of the Kazal-type 5 serine protease inhibitor following the combined exposure to airborne phenol and educational factors is a molecular indicator of its prognostically unfavorable involvement into the pathogenesis of functional disorders of the nervous system in the form of vegetative-vascular dystonia.

About the Authors

M. A. Zemlianova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Russian Federation


N. V. Zaitseva
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Russian Federation


Yu. V. Koldibekova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Russian Federation


N. I. Bulatova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Russian Federation


References

1. Кучма В.Р. Охрана здоровья детей и подросток в национальной стратегии действий в интересах детей на 2012-2017 // Гигиена и санитария. 2013. № 6. С. 26-30.

2. Назаров В.А. Сравнительный анализ уровня адаптации и психосоматического здоровья школьников Москвы и Подмосковья при сочетанном воздействии факторов окружающей среды // Вестник РУДН, Серия Экология и безопасность жизнедеятельности. 2012. № 2. С. 57-62.

3. Акарачкова Е.С., Вершинина С.В. Синдром вегетативной дистонии у современных детей и подростков // Педиатрия. 2011. Т. 90, № 6. С. 131-136.

4. Вялков А.И., Мартынчик С.А. , Полесский В.А., Ковров Г.В. Концепция персонализированной медицины в предметной области «нейромедицина» на технологической платформе «Медицина здоровья» // Здравоохранение Российской Федерации. 2014. Т. 58, № 6. С. 4-9.

5. Дон Е.С., Тарасов А.В., Эпштейн О.И., Тарасов С.А. Биомаркеры в медицине: поиск, выбор, изучение и валидация // Клиническая лабораторная диагностика. 2017. Т. 62, № 1. С. 52-59.

6. Мошковский С.А. Омикс-биомаркеры и ранняя диагностика // Биомедицинская химия. 2017. Т. 63, № 5. С. 369-372.

7. Ткачук Е.А., Филиппов Е.С., Жданова-Заплесвичко И.Г. Состояние здоровья школьников в условиях реформирования образования // Сибирский медицинский журнал. 2012. № 3. С. 14-17.

8. Гланц С. Медико-биологическая статистика. М.: Практика. 1998. 459 с.

9. Guidelines for Neurotoxicity Risk Assessment. Risk Assessment Forum. U.S. Environmental Protection Agency Washington, DC EPA/630/R-95/001F April 1998. Available at: www. epa.gov.neuro_tox.pdf. Accessed: 25 Jan 2020

10. Craft GE, Chen A, Nairn AC. Recent advances in quantitative neuroproteomics. Methods. 2013; 61(3):186-218. DOI: https://doi.org/10.1016/j.ymeth.2013.04.008

11. Golubnitschaja O, Costigliola V. General Report & Recommendations in Predictive, Preventive and Personalised Medicine 2012: White Paper of the European Association for Predictive, Preventive and Personalised Medicine. EPMA Journal. 2012; 3(1):1-53. (In Russian). DOI: https://doi. org/10.1186/1878-5085-3-14

12. Pamirsky IE, Borodin EA, Shtarberg MA. Regulation of proteolysis of plant and animal inhibitors. Publisher: Lambert Academic Publishing GmbH & Co, 2012. 96 p.

13. Almonte AG, Sweatt JD. Serine proteases, serine protease inhibitors, and protease-activated receptors: roles in synaptic function and behavior. Brain Res. 2011; 1407:107-122. DOI: https://doi.org/10.1016/j.brainres.2011.06.042

14. Tripathi LP, Sowdhamini R. Genome-wide survey of prokaryotic serine proteases: Analysis of distribution and domain architectures of five serine protease families in prokaryotes. BMC Genomics. 2008; 9:549. DOI: https:// doi.org/10.1186/1471-2164-9-549

15. Dalva MB, McClelland AC, Kayser MS. Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci. 2007; 8:206-220. DOI: https://doi.org/10.1038/ nrn2075

16. Lee TW, Tsang VW, Birch NP. Synaptic plasticity-associated proteases and protease inhibitors in the brain linked to the processing of extracellular matrix and cell adhesion molecules. Neuron Glia Biol. 2008; 4(3):223-34. DOI: https://doi.org/10.1017/s1740925X09990172


Review

For citations:


Zemlianova M.A., Zaitseva N.V., Koldibekova Yu.V., Bulatova N.I. Detection of omic markers of the nervous system adverse effects in children with a combined exposure to airborne chemicals and conditions of educational environment. Public Health and Life Environment – PH&LE. 2020;(5):12-17. (In Russ.) https://doi.org/10.35627/2219-5238/2020-326-5-12-17

Views: 294


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-5238 (Print)
ISSN 2619-0788 (Online)