Preview

Public Health and Life Environment – PH&LE

Advanced search

Genome Monitoring of SARS-CoV-2 Circulating in the Kyrgyz Republic in 2020–2021

https://doi.org/10.35627/2219-5238/2024-32-3-63-69

Abstract

Introduction: The RNA-containing severe acute respiratory syndrome virus SARS-CoV-2 has spread rapidly around the world by adaptation to the host through genetic evolution. The emergence of variants with genetic mutations that increase contagiousness and transmission may hamper the effectiveness of disease control programs and efficacy of vaccination.

Objective: To establish dominant SARS-CoV-2 variants circulating in the Kyrgyz Republic in 2020–2021.

Materials and methods: Genomic monitoring was carried out based on positive results of testing nasopharyngeal swabs. SARS-CoV-2 was detected by a real-time reverse transcription –polymerase chain reaction (RT-PCR) assay using registered commercial test kits. Genetic variants (n = 15) were determined by high-throughput sequencing on a MiSeq device (Illumina, USA) using the COVID-19 ARTIC v3 protocol. Mutational variability of SARS-CoV-2 was examined using a cluster analysis of amino acid substitutions in the S protein applying Ward’s method. Nucleotide sequences from Kyrgyzstan (n = 15), Russia (n = 16), India (n = 2), and China (n = 2) were aligned using MAFFT. IQ-TREE v1.6.12 was used to infer the phylogenetic tree by maximum likelihood applying Nextstrain processes. Isolates Wuhan/Hu-1/2019 and Wuhan/WH01/2019 downloaded from the GenBank® database were considered to be the root of the tree (reference).

Results: Phylogenetic data analysis revealed that SARS-CoV-2 B.1.1.7 (Alpha) was the dominant VOC variant, the proportion of which was as high as 36.4 % (12/33); B.1.351 (Beta) was also found (6.1 % or 2/33). When samples were examined for amino acid substitutions in the S-protein, B.1.1.7 Alpha (British) isolates were found to cluster into two distinct branches.

Conclusion: The study of the frequency and influence of mutations on pathogenetic properties of the virus, as well as the analysis of the predominant variants of the virus will allow timely measures to be taken to counteract the spread of SARS-CoV-2 in the country. In this regard, continuous genome monitoring of circulating COVID-19 variants is necessary.

About the Author

A. B. Dzhumakanova
Department of Disease Prevention and State Sanitary and Epidemiological Surveillance of the Ministry of Health of the Kyrgyz Republic
Kyrgyzstan

Aigul B. Dzhumakanova - Head of the Testing Laboratory Center, Department of Disease Prevention and State Sanitary and Epidemiological Surveillance of the Ministry of Health of the Kyrgyz Republic.

535 Frunze Street, Bishkek, 720033



References

1. Li Q, Tang B, Bragazzi NL, Xiao Y, Wu J. Modeling the impact of mass influenza vaccination and public health interventions on COVID-19 epidemics with limited detection capability. Math Biosci. 2020;325:108378. doi: 10.1016/j.mbs.2020.108378

2. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-269. doi: 10.1038/s41586-020-2008-3

3. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. doi: 10.1038/s41586-020-2012-7

4. Wang C, Liu Z, Chen Z, et al. The establishment of reference sequence for SARS-CoV-2 and variation analysis. J Med Virol. 2020;92(6):667-674. doi: 10.1002/jmv.25762

5. Kumar M, Taki K, Gahlot R, Sharma A, Dhangar K. A chronicle of SARS-CoV-2: Part-I – Epidemiology, diagnosis, prognosis, transmission and treatment. Sci Total Environ. 2020;734:139278. doi: 10.1016/j.scitotenv.2020.139278

6. Nasereddin A, Al-Jawabreh A, Dumaidi K, Al-Jawabreh A, Al-Jawabreh H, Ereqat S. Tracking of SARS-CoV-2 Alpha variant (B.1.1.7) in Palestine. Infect Genet Evol. 2022;101:105279. doi: 10.1016/j.meegid.2022.105279

7. Boni MF, Lemey P, Jiang X, et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol. 2020;5(11):1408-1417. doi: 10.1038/s41564-020-0771-4

8. MacLean OA, Lytras S, Weaver S, et al. Natural selection in the evolution of SARS-CoV-2 in bats created a generalist virus and highly capable human pathogen. PLoS Biol. 2021;19(3):e3001115. doi: 10.1371/journal.pbio.3001115

9. Ellis P, Somogyvári F, Virok DP, Noseda M, McLean GR. Decoding Covid-19 with the SARS-CoV-2 genome. Curr Genet Med Rep. 2021;9(1):1-12. doi: 10.1007/s40142-020-00197-5

10. McLean G, Kamil J, Lee B, et al. The impact of evolving SARS-CoV-2 mutations and variants on COVID-19 vaccines. mBio. 2022;13(2):e0297921. doi: 10.1128/mbio.02979-21

11. Li X, Giorgi EE, Marichannegowda MH, et al. Emergence of SARS-CoV-2 through recombination and strong purifying selection. Sci Adv. 2020;6(27):eabb9153. doi: 10.1126/sciadv.abb9153

12. Bobay LM, O’Donnell AC, Ochman H. Recombination events are concentrated in the spike protein region of Betacoronaviruses. PLoS Genet. 2020;16(12):e1009272. doi: 10.1371/journal.pgen.1009272

13. Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48:1-100. doi: 10.1016/S0065-3527(08)60286-9

14. Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24(6):490-502. doi: 10.1016/j.tim.2016.03.003

15. Lytras S, Hughes J, Martin D, et al. Exploring the natural origins of SARS-CoV-2 in the light of recombination. Genome Biol Evol. 2022;14(2):evac018. doi: 10.1093/gbe/evac018

16. Volz E, Mishra S, Chand M, et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature. 2021;593(7858):266-269. doi: 10.1038/s41586-021-03470-x

17. Slavov SN, Bezerra RDS, Rodrigues ES, et al. Genomic monitoring of the SARS-CoV-2 B1.1.7 (WHO VOC Alpha) in the Sao Paulo state, Brazil. Virus Res. 2022;308:198643. doi: 10.1016/j.virusres.2021.198643

18. Vassallo M, Manni S, Klotz C, et al. Patients admitted for variant Alpha COVID-19 have poorer outcomes than those infected with the old strain. J Clin Med. 2021;10(16):3550. doi: 10.3390/jcm10163550

19. Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health. 2020;25(3):278-280. doi: 10.1111/tmi.13383

20. Yurkovetskiy L, Wang X, Pascal KE, et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell. 2020;183(3):739-751.e8. doi: 10.1016/j.cell.2020.09.032

21. Korber B, Fischer WM, Gnanakaran S, et al.; Sheffield COVID-19 Genomics Group. Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182(4):812-827.e19. doi: 10.1016/j.cell.2020.06.043

22. Plante JA, Liu Y, Liu J, et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 2021;592(7852):116-121. doi: 10.1038/s41586-020-2895-3

23. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268-274. doi: 10.1093/molbev/msu300

24. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: More models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772. doi: 10.1038/nmeth.2109

25. Sagulenko P, Puller V, Neher RA. TreeTime: Maximum-likeli-hood phylodynamic analysis. Virus Evol. 2018;4(1):vex042. doi: 10.1093/ve/vex042

26. Tian X, Li C, Huang A, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020; 9(1):382-385. doi: 10.1080/22221751.2020.1729069

27. Melnyk A, Mohebbi F, Knyazev S, et al. From Alpha to Zeta: Identifying variants and subtypes of SARS-CoV-2 via clustering. J Comput Biol. 2021;28(11):1113-1129. doi: 10.1089/cmb.2021.0302

28. Rambaut A, Holmes EC, O’Toole Á, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020;5(11):1403-1407. doi: 10.1038/s41564-020-0770-5

29. Washington NL, Gangavarapu K, Zeller M, et al. Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States. Cell. 2021;184(10):2587-2594.e7. doi: 10.1016/j.cell.2021.03.052

30. Gaymard A, Bosetti P, Feri A, et al. ANRS MIE AC43 COVID-19; French viro COVID group. Early assessment of diffusion and possible expansion of SARS-CoV-2 Lineage 20I/501Y.V1 (B.1.1.7, variant of concern 202012/01) in France, January to March 2021. Euro Surveill. 2021;26(9):2100133. doi: 10.2807/1560-7917.ES.2021.26.9.2100133

31. Loconsole D, Centrone F, Morcavallo C, et al. Rapid spread of the SARS-CoV-2 variant of concern 202012/01 in southern Italy (December 2020–March 2021). Int J Environ Res Public Health. 2021;18(9):4766. doi: 10.3390/ijerph18094766

32. Akimkin VG, Popova AYu, Khafizov KF, et al. COVID-19: Evolution of the pandemic in Russia. Report II: Dynamics of the circulation of SARS-CoV-2 genetic variants. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii. 2022;99(4):381–396. (In Russ.) doi: 10.36233/0372-9311-295

33. Davies NG, Abbott S, Barnard RC, et al., CMMID COVID-19 Working Group; COVID-19 Genomics UK (COG-UK) Consortium. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. 2021;372(6538):eabg3055. doi: 10.1126/science.abg3055

34. Starr TN, Greaney AJ, Hilton SK, et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell. 2020;182(5):1295-1310.e20. doi: 10.1016/j.cell.2020.08.012

35. Hoffmann M, Kleine-Weber H, Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 2020;78(4):779-784.e5. doi: 10.1016/j.molcel.2020.04.022

36. Peacock TP, Goldhill DH, Zhou J, et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol. 2021;6(7):899-909. doi: 10.1038/s41564-021-00908-w

37. Maison DP, Ching LL, Shikuma CM, Nerurkar VR. Genetic characteristics and phylogeny of 969-bp S gene sequence of SARS-CoV-2 from Hawai’i reveals the worldwide emerging P681H mutation. Hawaii J Health Soc Welf. 2021;80(3):52-61.

38. Tegally H, Wilkinson E, Giovanetti M, et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature. 2021;592(7854):438-443. doi: 10.1038/s41586-021-03402-9

39. Galloway SE, Paul P, MacCannell DR, et al. Emergence of SARS-CoV-2 B.1.1.7 lineage – United States, December 29, 2020 – January 12, 2021. MMWR Morb Mortal Wkly Rep. 2021;70(3):95-99. doi: 10.15585/mmwr.mm7003e2

40. Tang JW, Toovey OTR, Harvey KN, Hui DDS. Introduction of the South African SARS-CoV-2 variant 501Y.V2 into the UK. J Infect. 2021;82(4):e8-e10. doi: 10.1016/j.jinf.2021.01.007

41. Zucman N, Uhel F, Descamps D, Roux D, Ricard J-D. Severe reinfection with South African severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant 501Y.V2. Clin Infect Dis. 2021;73(10):1945-1946. doi: 10.1093/cid/ciab129


Review

For citations:


Dzhumakanova A.B. Genome Monitoring of SARS-CoV-2 Circulating in the Kyrgyz Republic in 2020–2021. Public Health and Life Environment – PH&LE. 2024;32(3):63-69. (In Russ.) https://doi.org/10.35627/2219-5238/2024-32-3-63-69

Views: 290


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-5238 (Print)
ISSN 2619-0788 (Online)