Preview

Public Health and Life Environment – PH&LE

Advanced search

Spatial Modeling of Mortality of the Working-Age Population in the Republic of Bashkortostan

https://doi.org/10.35627/2219-5238/2023-31-12-7-16

Abstract

Introduction: The persisting high mortality rate among working-age adults affects both the production potential of the country and the prospects for achieving the goal of increasing healthy life expectancy, as set by the National Demography Project. Variations in mortality are attributed not only to structural differences in the population (sex, age, etc.) but also to significant differences in regional living and working conditions, thus necessitating a more careful study of spatial factors of its growth.

Objective: To conduct a spatial analysis of mortality among the working-age population and to identify its determinants based on data for the Republic of Bashkortostan (RB).

Materials and methods: The information basis of the study is a balanced panel of mortality rates and their socioeconomic determinants for 74 areas (54 districts and 20 cities) and 19 time spans (2002–2020), formed for men and women separately. The Moran’s spatial autocorrelation coefficient and the spatial panel regression modeling were used for data analysis. The neighborhood matrix was used as a weight matrix of spatial connectivity of territories.

Results: Our findings showed a pronounced spatial autocorrelation (p < 0.001) for mortality of the working-age population of both sexes. An increase in the gross municipal product per capita significantly (p < 0.001) reduced the overall mortality rate in both men and women of working age while an increase in the local crime rate, on the opposite, significantly increased it. Sex-specific differences were established in the impact of availability of medical resources on working-age mortality: for women this factor was found to be insignificant.

Conclusions: The mortality of the working-age population has a non-local, but a spatially dependent nature. 

About the Authors

I. A. Lakman
Ufa University of Science and Technology
Russian Federation

Irina A. Lakman, Cand. Sci. (Tech.), Head of the Laboratory for the Study of Socio-Economic Problems of Regions 

32 Zaki Validi Street, Ufa, 450076



R. A. Askarov
Sergo Ordzhonikidze Russian State University for Geological Prospecting
Russian Federation

Rasul A. Askarov, Cand. Sci. (Med.), Associate Professor, Department of Technosphere Safety

23 Miklukho-Maklay Street, Moscow, 117997



V. M. Timiryanova
Ufa University of Science and Technology
Russian Federation

Venera M. Timiryanova, Dr. Sci. (Econ.), Deputy Head of the Laboratory for the Study of Socio-Economic Problems of Regions

32 Zaki Validi Street, Ufa, 450076



Z. F. Askarova
Bashkir State Medical University
Russian Federation

Zagira F. Askarova, Dr. Sci. (Med.), Professor, Department of Hospital Therapy No. 2

3 Lenin Street, Ufa, 450008



References

1. Gorchakova TYu, Churanova AN. Current state of mortality of the working-age population in Russia and Europe. Meditsina Truda i Promyshlennaya Ekologiya. 2020;60(11):756-759. (In Russ.) doi: 10.31089/1026- 9428-2020-60-11-756-759

2. Berendeeva AB, Sizova OV. Analysis of factors of mortality of population in the labor age in the regions of the Russian Federation by the model of modeling. Teoreticheskaya Ekonomika. 2020;(4(64)):11-24. (In Russ.)

3. Bashkireva AS. The demographic and professional risks of depopulation of the Russian labor forces (analytical review). Uspekhi Gerontologii. 2010;23(1):30-39. (In Russ.)

4. Ivanova AE. Mortality forecast in Russia based on monitoring major social determinants. Sotsial’nye Aspekty Zdorov’ya Naseleniya. 2020;66(6):6. (In Russ.) doi: 10.21045/2071-5021-2020-66-6-6

5. Ivanova AE, Pletneva JuE, Sivoplasova SYu, Sigareva EP, Arkhangelskiy VN. Is natural population growth in Russia possible in the next 10 years? Ekonomika. Nalogi. Pravo. 2021;14(2):32-43. (In Russ.) doi: 10.26794/1999-849x2021-14-2-32-43

6. Korolenko AV. Mortality in Russian regions in the current decade: Trends, structure, and differentiation of indicators. Sotsial’noe Prostranstvo. 2020;6(3):7. (In Russ.) doi: 10.15838/sa.2020.3.25.7

7. Drapkina OM, Samorodskaya IV, Yavelov IS, Kashtalap VV, Barbarash OL. Regional differences in cardiac mortality rates in Russia: The role of statistical features. Kardiovaskulyarnaya Terapiya i Profilaktika. 2021;20(7):163-171. (In Russ.) https://doi.org/10.15829/1728-8800-2021-2928

8. Shartova NV, Krainov VN, Malkhazova SM, Tikunov VS. Spatial analysis of urban mortality. Vestnik Moskovskogo Universiteta. Seriya 5: Geografiya. 2020;(5):45-51. (In Russ.)

9. Spijker J, Recaño J, Martínez S, Carioli A. Mortality by cause of death in Colombia: A local analysis using spatial econometrics. J Geogr Syst. 2021;23:161–207. doi: 10.1007/s10109-020-00335-1

10. Cupido K, Fotheringham AS, Jevtic P. Local modelling of U.S. mortality rates: A multiscale geographically weighted regression approach. Popul Space Place. 2021;27(1):e2379. doi: 10.1002/psp.2379

11. Weng SS, Chan TC, Hsu PY, Niu SF. Neighbourhood social determinants of health and geographical inequalities in premature mortality in Taiwan: A spatiotemporal approach. Int J Environ Res Public Health. 2021;18(13):7091. doi: 10.3390/ijerph18137091

12. Alshaabi T, Dewhurst DR, Bagrow JP, Dodds PS, Danforth CM. The sociospatial factors of death: Analyzing effects of geospatially–distributed variables in a Bayesian mortality model for Hong Kong. PLoS ONE. 2021;16(3):e0247795. doi: 10.1371/journal.pone.0247795

13. Banerjee S. Spatial data analysis. Annu Rev Public Health. 2016;37:47-60. doi: 10.1146/annurev-publhealth-032315-021711

14. Chammartin F, Probst-Hensch N, Utzinger J, Vounatsou P. Mortality atlas of the main causes of death in Switzerland, 2008–2012. Swiss Med Wkly. 2016;146:w14280. doi: 10.4414/smw.2016.14280

15. Gao L, Banerjee S, Ritz B. Spatial difference boundary detection for multiple outcomes using Bayesian disease mapping. Biostatistics. 2023;24(4):922-944. doi: 10.1093/ biostatistics/kxac013

16. Yang TC, Jensen L. Exploring the inequality–mortality relationship in the US with Bayesian spatial modeling. Popul Res Policy Rev. 2015;34(3):437-460. doi: 10.1007/ s11113-014-9350-9

17. Lorant V, Thomas I, Deliège D, Tonglet R. Deprivation and mortality: The implications of spatial autocorrelation for health resources allocation. Soc Sci Med. 2001;53(12):1711- 1719. doi: 10.1016/s0277-9536(00)00456-1

18. Baptista EA, Queiroz BL. Spatial analysis of cardiovascular mortality and associated factors around the world. BMC Public Health. 2022;22(1):1556. doi: 10.1186/ s12889-022-13955-7

19. Cao Q, Liang Y, Niu X. China’s air quality and respiratory disease mortality based on the spatial panel model. Int J Environ Res Public Health. 2017;14(9):1081. doi: 10.3390/ijerph14091081

20. Timiryanova VM, Askarov RA, Lakman IA, Askarova ZF. Spatial effects of mortality among the able-bodied population in the Republic of Bashkortostan. Ekologiya Cheloveka (Human Ecology). 2023;30(7):523-537. (In Russ.) doi: 10.17816/humeco456492

21. Bermudi PMM, Pellini ACG, Salinas-Rebolledo EA, et al. Spatial pattern of mortality from breast and cervical cancer in the city of São Paulo. Rev Saude Publica. 2020;54:142. doi: 10.11606/s1518-8787.2020054002447

22. Balint L, Dome P, Daroczi G, Gonda X, Rihmer Z. Investigation of the marked and long-standing spatial inhomogeneity of the Hungarian suicide rate: A spatial regression approach. J Affect Disord. 2014;155:180-185. doi: 10.1016/j.jad.2013.10.047

23. Penina O. Spatial disparities in mortality by causes of death in the Republic of Moldova. Moldovan Medical Journal. 2021;64(4):55–61. doi: 10.52418/moldovan-med-j.64-4.21.10

24. Inozemcev ES, Kochetygova OV. Spatial panel analysis of fertility and life expectancy in Russia. Izvestiya Saratovskogo Universiteta. Novaya Seriya. Seriya: Ekonomika. Upravlenie. Pravo. 2018;18(3):314-321. (In Russ.) doi: 10.18500/1994-2540-2018-18-3-314-321

25. Askarov RA, Lakman IA, Askarova ZF, Agapitov AA. Medical and social factors spatial influence on cardiovascular mortality (by an example of Bashkortostan Republic). Rossiyskiy Kardiologicheskiy Zhurnal. 2017;22(6):146- 151. (In Russ.) doi: 10.15829/1560-4071-2017-6-146-151

26. Egorova NN, Frants MV. Cancer mortality rate in the Republic of Bashkortostan: Spatial modeling. In: Demographic Readings. Challenges and Trends of the Demographic Development of Russia and Its Regions: Collection of Articles. Ufa: “Bashkir Encyclopedia” Publ.; 2020:88-91. (In Russ.)

27. Bivand R, Millo G, Piras G. A review of software for spatial econometrics in R. Mathematics. 2021;9(11):1276. doi: 10.3390/math9111276

28. Croissant Y, Millo G, eds. Panel Data Econometrics with R. EU, USA: John Wiley & Sons, Ltd; 2019. doi: 10.1002/9781119504641

29. UN-HABITAT Urban Indicators Guidelines: ‘Better Information, Better Cities’ Monitoring the Habitat Agenda and the Millennium Development Goals – Slums Target. Technical Report. United Nations Human Settlements Programme; 2009. Accessed December 11, 2023. https:// unhabitat.org/urban-indicators-guidelinesmonitoring-the-habitat-agenda-and-the-millennium-development-goals/

30. Cai Z, Chen M, Ye P, Yip PSF. Socio-economic determinants of suicide rates in transforming China: A spatial-temporal analysis from 1990 to 2015. Lancet Reg Health West Pac. 2021;19:100341. doi: 10.1016/j. lanwpc.2021.100341

31. Yang Y, Shang HL, Cohen JE. Temporal and spatial Taylor’s law: Application to Japanese subnational mortality rates. J R Stat Soc Ser A Stat Soc. 2022;185(4):1979–2006. doi: 10.1111/rssa.12859

32. Diez Roux AV, Green Franklin T, Alazraqui M, Spinelli H. Intraurban variations in adult mortality in a large Latin American city. J Urban Health. 2007;84(3):319-333. doi: 10.1007/s11524-007-9159-5

33. Wang S, Ren Z. Spatial variations and macroeconomic determinants of life expectancy and mortality rate in China: A county-level study based on spatial analysis models. Int J Public Health. 2019;64(5):773–783. doi: 10.1007/s00038-019-01251-y

34. Sizova OV, Berendeeva AB, Rychikhina NS. Using the modeling method in the analysis of mortality factors of the working-age population in the regions of Russia. Sovremennye Naukoemkie Tekhnologii. Regional’noe Prilozhenie. 2020;(2(62)):62-73. (In Russ.)

35. Sun Y, Hu X, Xie J. Spatial inequalities of COVID-19 mortality rate in relation to socioeconomic and environmental factors across England. Sci Total Environ. 2021;758:143595. doi: 10.1016/j.scitotenv.2020.143595

36. Stenbacka M, Jansson B. Unintentional injury mortality – The role of criminal offending. A Swedish longitudinal population based study. Int J Inj Contr Saf Promot. 2014;21(2):127-135. doi: 10.1080/17457300.2013.792281


Review

For citations:


Lakman I.A., Askarov R.A., Timiryanova V.M., Askarova Z.F. Spatial Modeling of Mortality of the Working-Age Population in the Republic of Bashkortostan. Public Health and Life Environment – PH&LE. 2023;31(12):7-16. (In Russ.) https://doi.org/10.35627/2219-5238/2023-31-12-7-16

Views: 398


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-5238 (Print)
ISSN 2619-0788 (Online)