Comparative Analysis of Own Experimental Data on Changes in Rat Behavioral Responses Following Subchronic Exposure to Various Nanoparticles
https://doi.org/10.35627/2219-5238/2023-31-9-58-63
Abstract
Introduction: Air pollution with nanoparticles (NPs) of different chemical composition is registered almost everywhere and, along with the growing use of nanotechnology products, poses serious human health risks related to NP exposure, included those for the nervous system.
Objective: To compare changes in functioning of the central nervous system in rats following subchronic intraperitoneal exposure to nickel, manganese, copper, zinc, lead, silicon, and titanium oxide nanoparticles based on the results of behavioral tests.
Materials and methods: We compared findings of our own subchronic toxicity studies of Ni, Mn, Cu, Zn, Pb, Si, and Ti oxide nanoparticles with a focus on behavioural responses.
Results: The comparison showed differences in severity of rat behavioral responses observed after subchronic intraperitoneal instillation of metal oxide nanoparticles at a single dose of 2.5 mg/kg of body weight. We observed a decrease in exploratory activity of rats that was statistically significant in the group of rodents exposed to Mn3O4, NiO, and PbO NPs, and a change in the summation threshold index that increased statistically in the CuO and ZnO nanoparticle exposure groups.
Conclusion: Our findings contribute to understanding of neurotoxic effects of nanoparticles and facilitate a more profound and trustworthy assessment of human health risks.
About the Authors
I. A. MinigalievaRussian Federation
Ilzira A. Minigalieva, Dr. Sci. (Biol.), Head of the Department of Toxicology and Bioprophylaxis
30 Popov Street, Yekaterinburg, 620014
M. P. Sutunkova
Russian Federation
Marina P. Sutunkova, Dr. Sci. (Med.), Director
30 Popov Street, Yekaterinburg, 620014
Yu. V. Ryabova
Russian Federation
Yuliya V. Ryabova, Researcher, Head of the Laboratory of Scientific Fundamentals of Biological Prophylaxis, Department of Toxicology and Bioprophylaxis
30 Popov Street, Yekaterinburg, 620014
L. V. Shabardina
Russian Federation
Lada V. Shabardina, Junior Researcher, Department of Toxicology and Bioprophylaxis
30 Popov Street, Yekaterinburg, 620014
V. A. Bateneva
Russian Federation
Vlada A. Bateneva, Laboratory Assistant, Department of Toxicology and Bioprophylaxis
30 Popov Street, Yekaterinburg, 620014
I. V. Butakova
Russian Federation
Inna V. Butakova, Junior Researcher, Clinic for Occupational Disease Diagnosis and Therapy
30 Popov Street, Yekaterinburg, 620014
L. I. Privalova
Russian Federation
Larisa I. Privalova, Dr. Sci. (Med.), Professor, Chief Researcher, Department of Toxicology and Bioprophylaxis
30 Popov Street, Yekaterinburg, 620014
References
1. Lachowicz JI, Lecca LI, Meloni F, Campagna M. Metals and metal-nanoparticles in human pathologies: From exposure to therapy. Molecules. 2021;26(21):6639. doi: 10.3390/molecules26216639
2. Selmani A, Kovačević D, Bohinc K. Nanoparticles: From synthesis to applications and beyond. Adv Colloid Interface Sci. 2022; 303:102640. doi: 10.1016/j.cis.2022.102640.
3. Win-Shwe TT, Fujimaki H. Nanoparticles and neurotoxicity. Int J Mol Sci. 2011;12(9):6267-6280. doi: 10.3390/ijms12096267
4. Czajka M, Sawicki K, Sikorska K, Popek S, Kruszewski M, Kapka-Skrzypczak L. Toxicity of titanium dioxide nanoparticles in central nervous system. Toxicol in Vitro. 2015;29(5):1042-1052. doi: 10.1016/j.tiv.2015.04.004
5. Mushtaq G, Khan JA, Joseph E, Kamal MA. Nanoparticles, neurotoxicity and neurodegenerative diseases. Curr Drug Metab. 2015;16(8):676-684. doi: 10.2174/1389200216666150812122302
6. Sharafutdinova LA, Fedorova AM, Bashkatov SA, Sinelnikov KN, Valiullin VV. Neurotoxic effects of the titanium dioxide nanoparticles. Vestnik Ural’skoy Meditsinskoy Akademicheskoy Nauki. 2018;15(1):87–95. (In Russ.) doi: 10.22138/2500-0918-2018-15-1-87-95
7. Zaitseva NV, Zemlyanova MA, Zvezdin VN, Akafyeva TI, Mazunina DL, Dovbish AA. Effects of subchronic exposure manganese oxide nanoparticles on the central nervous system, lipid peroxidation and antioxidant enzymes in rats. Health Risk Analysis. 2014;(4):53-62.
8. Sutunkova MP, Solovyeva SN, Chernyshov IN, et al. Manifestations of subacute systemic toxicity of lead oxide nanoparticles in rats after an inhalation exposure. Toksikologicheskiy Vestnik. 2020;(6(165)):3-13. (In Russ.) doi: 10.36946/0869-7922-2020-6-3-13
9. Bystrova MN, Demidova MA, Panina GA, Zholobov IS, Galchinskaya IL. The influence of sedative gathering preparations on roughly-research behavior of mice. Sovremennye Problemy Nauki i Obrazovaniya. 2011;(6):16. (In Russ.)
10. Speransky SV. [On advantages of applying a rising current when using the ability of white mice to sum subthreshold pulses.] Farmakologiya i Toksikologiya. 1965;(1):123–124. (In Russ.)
11. Erlich JC, Bialek M, Brody CD. A cortical substrate for memory-guided orienting in the rat. Neuron. 2011;72(2):330-343. doi: 10.1016/j.neuron.2011.07.010
12. Pisula W, Modlinska K, Goncikowska K, Chrzanowska A. Can the hole-board test predict a rat’s exploratory behavior in a free-exploration test? Animals (Basel). 2021;11(4):1068. doi: 10.3390/ani11041068
13. Simonov PV. [Human Higher Nervous Activity. Motivational and Emotional Aspects.] Moscow: Lenand Publ.; 2021. (In Russ.)
14. Sharafutdinova LA, Yusupov AR, Fedorova AM. [Impact of titanium dioxide nanoparticles on the levels of anxiety and depression in rats.] In: Khismatullina ZR, ed. Modern Neurobiology: Achievements, Patterns, Problems, Innovations, Technologies: Proceedings of the Russian Conference, Ufa, October 22–23, 2015. Ufa: Editorial and Publishing Center of the Bashkir State University Publ.; 2015:125-131. (In Russ.) Accessed July 21, 2023. https://xn--90aeenbcqllcbs7r.xn--80abvyzg.xn--p1ai/neuroufa_sourcebook.pdf
15. Povorinsky AG, Zabolotnykh VA. [A Manual on Clinical Electroencephalography.] Leningrad: Leningrad Branch of Nauka Publ.; 1987. (In Russ.)
16. Gostyukhina AA, Zamoshchina TA, Svetlik MV, Zhukova OB, Zaitsev KV, Abdulkina NG. Bahavioral activity of rats in the “open field” after the light and dark deprivation and physical exhaustion. Bulleten’ Sibirskoy Meditsiny. 2016;15(3):16–23. (In Russ.) doi: 10.20538/1682-0363-2016-3-16-23
17. Markel AL. [On evaluation of the main characteristics of rats’ behavior in the open field test.] Zhurnal Vysshey Nervnoy Deyatel’nosti. 1981;31(2):301–307. (In Russ.)
18. Sutunkova MP, Solovyeva SN, Chernyshov IN, et al. Manifestation of systemic toxicity in rats after a short-time inhalation of lead oxide nanoparticles. Int J Mol Sci. 2020;21(3):690. doi: 10.3390/ijms21030690
19. Amromina AM, Shaikhova DR, Bereza IA, et al. Some neurotoxic effects of lead nanoparticles on NMDA glutamate receptor gene expression and behavioral responses in Wistar rats. Gigiena i Sanitariya. 2022;101(12):1581-1587. (In Russ.) doi: 10.47470/0016-9900-2022-101-12-1581-1587
20. Minigalieva IA, Ryabova YV, Shelomencev IG, et al. Analysis of experimental data on changes in various structures and functions of the rat brain following intranasal administration of Fe2O3 nanoparticles. Int J Mol Sci. 2023;24(4):3572. doi: 10.3390/ijms24043572
21. Dąbrowska-Bouta B, Zięba M, Orzelska-Górka J, et al. Influence of a low dose of silver nanoparticles on cerebral myelin and behavior of adult rats. Toxicology. 2016;363-364:29-36. doi: 10.1016/j.tox.2016.07.
Review
For citations:
Minigalieva I.A., Sutunkova M.P., Ryabova Yu.V., Shabardina L.V., Bateneva V.A., Butakova I.V., Privalova L.I. Comparative Analysis of Own Experimental Data on Changes in Rat Behavioral Responses Following Subchronic Exposure to Various Nanoparticles. Public Health and Life Environment – PH&LE. 2023;31(9):58-63. (In Russ.) https://doi.org/10.35627/2219-5238/2023-31-9-58-63