Preview

Public Health and Life Environment – PH&LE

Advanced search

Evaluation of Effects of Selenium Nanoparticles as an Occupational and Environmental Chemical Hazard on Cellular Bioenergetic Processes

https://doi.org/10.35627/2219-5238/2022-30-9-29-34

Abstract

Introduction: High-volume manufacturing of selenium and a widespread use of its compounds pose potential risks to human health. Certain copper production processes emit selenium-containing nanoparticles.
Objective: To assess health effects of selenium oxide nanoparticles as an industrial and environmental toxicant.
Materials and methods: Selenium oxide nanoparticles (SeO NPs) were obtained by laser ablation. Their toxicity was studied both in vitro on human lung-derived embryonic fibroblasts (FLEH-104 cell line) by assaying adenosine triphosphate (ATP) bioluminescence and the rate of oxygen consumption, and in vivo on outbred albino rats by analyzing ultrastructural changes in tissues using electron microscopy, measuring succinate dehydrogenase activity of blood lymphocytes, and conducting a blood-based metabolomic test.
Results: The in vitro experiment showed a decrease in ATP bioluminescence by 75.9 % and in the oxygen consumption rate of cells by 79.8 % in the incubation medium with 100 μg/mL concentration of SeO NPs. In the in vivo experiment, succinate dehydrogenase activity of blood lymphocytes decreased inversely with the increasing dose by 10.12 %, 14.0 %, 15.9 % compared to the control animals in the SeO NPs 0.1, SeO NPs 0.5, and SeO NPs 1 exposure groups, respectively. The study of ultrastructural changes in liver tissue showed a smaller number of normal mitochondria (7.78 % less in the SeO NP 1 group) compared to the controls while the metabolomic test revealed decreased acylcarnitines and increased lysophosphatidylinositols following the exposure to SeO NPs (p > 0.05).
Conclusion: The results of our in vitro and in vivo studies showed adverse effects of SeO NPs on bioenergetics processes in cells involving at least two mechanisms: disruption of mitochondrial β-oxidation of fatty acids and inactivation of succinate dehydrogenase. The fundamental role of the latter in the mitochondrial electron transport chain makes its vitally important for most multicellular organisms. Our findings can serve as a rationale for assessing selenium-containing nanoparticles as a chemical hazard and searching for approaches to managing their health risks.

About the Authors

Yu. V. Ryabova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Yuliya V. Ryabova, Junior Researcher, Department of Toxicology and Bioprophylaxis

30 Popov Street, Yekaterinburg, 620014



M. P. Sutunkova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Marina P. Sutunkova, Dr. Sci. (Med.), Director

30 Popov Street, Yekaterinburg, 620014



A. I. Chemezov
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Aleksei I. Chemezov, Researcher, Department of Molecular Biology and Electron Microscopy

30 Popov Street, Yekaterinburg, 620014



I. A. Minigalieva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Ilzira A. Minigalieva, Dr. Sci. (Biol.), Head of the Department of Toxicology and Bioprophylaxis

30 Popov Street, Yekaterinburg, 620014



T. V. Bushueva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Tatiana V. Bushueva, Cand. Sci. (Med.), Head of the Research and Production Association “Laboratory and Diagnostic Technologies”

30 Popov Street, Yekaterinburg, 620014



I. G. Shelomentsev
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Ivan G. Shelomentsev, Researcher, Department of Molecular Biology and Electron Microscopy

30 Popov Street, Yekaterinburg, 620014



S. V. Klinova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Svetlana V. Klinova, Researcher, Department of Toxicology and Bioprophylaxis

30 Popov Street, Yekaterinburg, 620014



References

1. Kulchitsky NA, Naumov AV. [Modern state of the markets of selenium and its compounds.] Izvestiya Vysshikh Uchebnykh Zavedeniy. Tsvetnaya Metallurgiya. 2015;(3):40-48. (In Russ.) doi: 10.17073/0021-3438-2015-3-40-48

2. Geoffrion LD, Hesabizadeh T, Medina-Cruz D, et al. Naked selenium nanoparticles for antibacterial and anticancer treatments. ACS Omega. 2020;5(6):2660-2669. doi: 10.1021/acsomega.9b03172

3. Keyhani A, Shakibaie M, Mahmoudvand H, et al. Prophylactic activity of biogenic selenium nanoparticles against chronic Toxoplasma gondii infection. Recent Pat Antiinfect Drug Discov. 2020;15(1):75-84. doi: 10.2174/1574891X15666200604115001

4. Gao F, Yuan Q, Gao L, et al. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles. Biomaterials. 2014;35(31):8854-8866. doi: 10.1016/j.biomaterials.2014.07.004

5. Sonkusre P. Specificity of biogenic selenium nanoparticles for prostate cancer therapy with reduced risk of toxicity: an in vitro and in vivo study. Front Oncol. 2020;9:1541. doi: 10.3389/fonc.2019.01541

6. Jin Y, Cai L, Yang Q, et al. Anti-leukemia activities of selenium nanoparticles embedded in nanotube consisted of triple-helix β-d-glucan. Carbohydr Polym. 2020;240:116329. doi: 10.1016/j.carbpol.2020.116329

7. Dehkordi AJ, Mohebbi AN, Aslani MR, Ghoreyshi SM. Evaluation of nanoselenium (Nano-Se) effect on hematological and serum biochemical parameters of rat in experimentally lead poisoning. Hum Exp Toxicol. 2017;36(4):421-427. doi: 10.1177/0960327116651124

8. Rezvanfar MA, Rezvanfar MA, Shahverdi AR, et al. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles. Toxicol Appl Pharmacol. 2013;266(3):356-365. doi: 10.1016/j.taap.2012.11.025

9. Sun J, Wei C, Liu Y, et al. Progressive release of mesoporous nano-selenium delivery system for the multi-channel synergistic treatment of Alzheimer’s disease. Biomaterials. 2019;197:417-431. doi: 10.1016/j.biomaterials.2018.12.027

10. Hadrup N, Loeschner K, Skov K, et al. Effects of 14-day oral low dose selenium nanoparticles and selenite in rat – as determined by metabolite pattern determination. Peer J. 2016;4:e2601. doi: 10.7717/peerj.2601

11. He Y, Chen S, Liu Z, Cheng C, Li H, Wang M. Toxicity of selenium nanoparticles in male Sprague-Daley rats at supranutritional and nonlethal levels. Life Sci. 2014;115(1-2):44-51. doi: 10.1016/j.lfs.2014.08.023

12. Lesnichaya M, Shendrik R, Titov E, Sukhov B. Synthesis and comparative assessment of antiradical activity, toxicity, and biodistribution of κ-carrageenan-capped selenium nanoparticles of different size: in vivo and in vitro study. IET nanobiotechnol. 2020;14(6):519–526. doi: 10.1049/iet-nbt.2020.0023

13. Urbankova L, Skalickova S, Pribilova M, et al. Effects of sub-lethal doses of selenium nanoparticles on the health status of rats. Toxics. 2021;9(2):28. doi: 10.3390/toxics9020028

14. Narcissov RP. [Application of n-nitrotetrazole violet for quantitative cytochemistry of human lymphocyte dehydrogenases.] Arkhiv Anatomii, Gistologii i Embriologii. 1969;56(5):85-91. (In Russ.)

15. Sun MG, Williams J, Munoz-Pinedo C, et al. Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis. Nat Cell Biol. 2007;9(9):1057-1065. doi: 10.1038/ncb1630

16. Yücel UM, Başbuğan Y, Uyar A, Kömüroğlu AU, Keleş ÖF. Use of an antiarrhythmic drug against acute selenium toxicity. J Trace Elem Med Biol. 2020;59:126471. doi: 10.1016/j.jtemb.2020.126471

17. Darnell JC, Osterman DG, Saltiel AR. Synthesis of phosphatidylinositol in rat liver microsomes is accompanied by the rapid formation of lysophosphatidylinositol. Biochim Biophys Acta. 1991;1084(3):269–278. doi: 10.1016/0005-2760(91)90069-t

18. Poccia D, Larijani B. Phosphatidylinositol metabolism and membrane fusion. Biochem J. 2009;418(2):233–246. doi: 10.1042/bj20082105

19. Piñeiro R, Falasca M. Lysophosphatidylinositol signalling: New wine from an old bottle. Biochim Biophys Acta. 2012;1821(4):694-705. doi: 10.1016/j.bbalip.2012.01.009

20. Arifin SA, Falasca M. Lysophosphatidylinositol signalling and metabolic diseases. Metabolites. 2016;6(1):6. doi: 10.3390/metabo6010006

21. Makide K, Uwamizu A, Shinjo Y, et al. Novel lysophosphoplipid receptors: their structure and function. J Lipid Res. 2014;55(10):1986-1995. doi: 10.1194/jlr.R046920

22. Fondevila MF, Fernandez U, Gonzalez-Rellan MJ, et al. The L-α-lysophosphatidylinositol/G protein-coupled receptor 55 system induces the development of nonalcoholic steatosis and steatohepatitis. Hepatology. 2021;73(2):606-624. doi: 10.1002/hep.31290

23. Calvillo-Robledo A, Cervantes-Villagrana RD, Morales P, Marichal-Cancino BA. The oncogenic lysophosphatidylinositol (LPI)/GPR55 signaling. Life Sci. 2022;301:120596. doi: 10.1016/j.lfs.2022.120596

24. Wojtczak L. Effect of long-chain fatty acids and acyl-CoA on mitochondrial permeability, transport, and energy-coupling processes. J Bioenerg Biomembr. 1976;8(6):293–311. doi: 10.1007/BF00765158

25. Su X, Han X, Mancuso DJ, Abendschein DR, Gross RW. Accumulation of long-chain acylcarnitine and 3-hydroxy acylcarnitine molecular species in diabetic myocardium: identification of alterations in mitochondrial fatty acid processing in diabetic myocardium by shotgun lipidomics. Biochemistry. 2005;44(13):5234-5245. doi: 10.1021/bi047773a

26. Violante S, Ijlst L, te Brinke H, et al. Carnitine palmitoyltransferase 2 and carnitine/acylcarnitine translocase are involved in the mitochondrial synthesis and export of acylcarnitines. FASEB J. 2013;27(5):2039–2044. doi: 10.1096/fj.12-216689

27. Fernandes J, Hu X, Smith MR, Go YM, Jones DP. Selenium at the redox interface of the genome, metabolome and exposome. Free Radic Biol Med. 2018;127:215-227. doi: 10.1016/j.freeradbiomed.2018.06.002


Review

For citations:


Ryabova Yu.V., Sutunkova M.P., Chemezov A.I., Minigalieva I.A., Bushueva T.V., Shelomentsev I.G., Klinova S.V. Evaluation of Effects of Selenium Nanoparticles as an Occupational and Environmental Chemical Hazard on Cellular Bioenergetic Processes. Public Health and Life Environment – PH&LE. 2022;(9):29-34. (In Russ.) https://doi.org/10.35627/2219-5238/2022-30-9-29-34

Views: 433


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-5238 (Print)
ISSN 2619-0788 (Online)