Innate and Adaptive Immunity in Workers of the Main Occupations Exposed to Fine Particulate Matter in Potassium Chloride Production
https://doi.org/10.35627/2219-5238/2022-30-4-63-69
Abstract
Background: Workplace air pollution with fine particulate matter in industrial premises contributes to imbalance of nonspecific and specific immunity factors, increasing the risk of developing premorbid conditions in workers.
Objective: To study the features of phagocytic activity and subpopulation T-lymphocytes composition in workers engaged in the potassium chloride production.
Material and methods: The study was conducted in 2019–2022 within the Research Program of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing on hygiene problems, Clause 2.2.18 “Development of approaches to early diagnosis of production-related diseases using genomic and postgenomic analysis technologies in workers
associated with harmful factors of working conditions”, R&D No. 121081900044-4. The observation group consisted of 54 workers of the main occupations exposed, inter alia, to fine respirable particulate matter in potassium chloride production. The comparison group included 67 individuals having no occupational exposure to industrial hazards. We evaluated the
phagocytic activity of peripheral blood leuko¬cytes and determined the level of CD25 + and CD95 + differentiation cluster expression on T-lymphocytes by flow cytometry.
Results: We measured high airborne concentrations of fine particles at workplaces of mill, centrifuge and filter operators, granulation and drying workers that were 6.6 and 7 times higher than those of PM 2.5 and PM 10 in the working environment of the administrative staff, respectively. We also observed that the ability of neutrophils to absorb and digest foreign particles
was 20 % lower in the workers of the observation group (p = 0.047), while the proportions of CD25 + and CD95 + lymphocytes in them were 30 % and 60 % lower than those in the comparison group, respectively (p = 0.001–0.046).
Conclusion: We established the effect of fine particulate matter as a priority workplace air pollutant on innate and adaptive immunity in workers of the main occupations in the potassium chloride production facility. Parameters of innate (phagocytic number) and adaptive (CD25 + and CD95 + lymphocytes) immunity are recommended for use in early diagnosis of immune dysfunction and the development of occupational diseases in workers with inhalation exposure to fine particles.
About the Authors
O. V. DolgikhRussian Federation
Oleg V. Dolgikh, Dr. Sci. (Med.), Head of the Department
Department of Immunobiological Diagnostics
614045
82 Monastyrskaya Street
Perm
D. G. Dianova
Russian Federation
Dina G. Dianova, Dr. Sci. (Med.), Senior Researcher
Department of Immunobiological Diagnostics
614045
82 Monastyrskaya Street
614081
2 Polevaya Street
Perm
N. A. Nikonoshina
Russian Federation
Natalya A. Nikonoshina, Junior Researcher, postgraduate student
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Department of Immunobiological Diagnostics
614045
82 Monastyrskaya Street
Perm
References
1. Kalaeva S. Z., Chistyakov Ya. V., Muratova K. M., Chebotarev P. V. Influencing fine-dispersed dust upon biosphere and human. Izvestiya TulGU. Nauki o Zemle. 2016; (3): 40-63. (In Russ.)
2. Nadali A., Arfaeinia H., Asadgol Z., Fahiminia M. Indoor and outdoor concentration of PM 10 , PM 2.5 and PM 1 in residential building and evaluation of negative air ions (NAIs) in indoor PM removal. Environ Pollut Bioavailab. 2020; 32: 47-55. doi: 10.1080/26395940.2020.1728198
3. Azarov A. V., Zhukova N. S., Antonov F. G. Water-spray systems reducing negative effects of fine-dispersion dust at operator’s workplaces of machine-building industries. Procedia Eng. 2017; 206: 1407-1414. doi: 10.1016/j.proeng.2017.10.653
4. Кim H., Kim W. H., Kim Y. Y., Park H. Y. Air pollution and central nervous system disease: A review of the impact of fine particulate matter on neurological disorders. Front Public Health. 2020; 8: 575330. doi: 10.3389/fpubh.2020.575330
5. Saygın M., Gonca T., Öztürk Ö., et al. To investigate the effects of air pollution (PM 10 and SO 2 ) on the respiratory diseases asthma and chronic obstructive pulmonary disease. Turk Thorac J. 2017; 18 (2): 33-39. doi: 10.5152/TurkThoracJ.2017.16016
6. Aghababaeian H., Dastoorpoor M., Ghasemi A., Kiarsi M., Khanjani N., Araghi Ahvazi L. Cardiovascular and respiratory emergency dispatch due to short-term exposure to ambient PM 10 in Dezful, Iran. J Cardiovasc Thorac Res. 2019; 11 (4): 264-271. doi: 10.15171/jcvtr.2019.44
7. Chu Y. H., Kao S. W., Tantoh D. M., Ko P. C., Lan S. J., Liaw Y. P. Association between fine particulate matter and oral cancer among Taiwanese men. J Investig Med. 2019; 67 (1): 34-38. doi: 10.1136/jim-2016-000263
8. Sarkar S., Rivas-Santiago C. E., Ibironke O. A., et al. Season and size of urban particulate matter differentially affect cytotoxicity and human immune responses to Mycobacterium tuberculosis. PLoS One. 2019; 14 (7): e0219122. doi: 10.1371/journal.pone.0219122
9. Nagappan A., Park S. B., Lee S. J., Moon Y. Mechanistic implications of biomass-derived particulate matter for immunity and immune disorders. Toxics. 2021; 9 (2): 18. doi: 10.3390/toxics9020018
10. Li D., Li Y., Li G., Zhang Y., Li J., Chen H. Fluorescent reconstitution on deposition of PM 2.5 in lung and extrapulmonary organs. Proc Natl Acad Sci U S A. 2019; 116 (7): 2488-2493. doi: 10.1073/pnas.1818134116
11. Zaitseva N. V., Dolgikh O. V., Dianova D. G. Peculiarities of annex test in children living in conditions of man-caused load (at the example of Perm Krai). Permskiy Meditsinskiy Zhurnal. 2012; 29 (2): 89-94. (In Russ.)
12. Jaligama S., Saravia J., You D., et al. Regulatory T cells and IL10 suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafine particulate matter. Respir Res. 2017; 18 (1): 15. doi: 10.1186/s12931-016-0487-4
13. Miyata R., van Eeden S. F. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol Appl Pharmacol. 2011; 257 (2): 209-226. doi: 10.1016/j.taap.2011.09.007
14. Yang L., Li C., Tang X. The impact of PM 2.5 on the host defense of respiratory system. Front Cell Dev Biol. 2020; 8: 91. doi: 10.3389/fcell.2020.00091
15. Ibironke O., Carranza C., Sarkar S., et al. Urban air pollution particulates suppress human T-cell responses to Mycobacterium Tuberculosis. Int J Environ Res Public Health. 2019; 16 (21): 4112. doi: 10.3390/ijerph16214112
16. Kelley S. M., Ravichandran K. S. Putting the brakes on phagocytosis: „don’t–eat–me” signaling in physiology and disease. EMBO Rep. 2021; 22 (6): e52564. doi: 10.15252/embr.202152564
17. Kamber R. A., Nishiga Y., Morton B., et al. Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis. Nature. 2021; 597 (7877): 549-554. doi: 10.1038/s41586-021-03879-4
18. Ueno T., Yamamoto Y., Kawasaki K. Phagocytosis of microparticles increases responsiveness of macrophage-like cell lines U937 and THP-1 to bacterial lipopolysaccharide and lipopeptide. Sci Rep. 2021; 11 (1): 6782. doi: 10.1038/s41598-021-86202-5
19. Birkle T., Brown G. C. I’m infected, eat me! Innate immunity mediated by live, infected cells signaling to be phagocytosed. Infect Immun. 2021; 89 (5): e00476-20. doi: 10.1128/IAI.00476-20
20. Olazabal I. M., Martín-Cofreces N. B., Mittelbrunn M., Martínez del Hoyo G., Alarcón B., Sánchez-Madrid F. Activation outcomes induced in naïve CD8 T-cells by macrophages primed via „phagocytic” and nonphagocytic pathways. Mol Biol Cell. 2008; 19 (2): 701-710. doi: 10.1091/mbc.e07-07-0650
21. Cockram T. O. J., Dundee J. M., Popescu A. S., Brown G. C. The phagocytic code regulating phagocytosis of mammalian cells. Front Immunol. 2021; 12: 629979. doi: 10.3389/fimmu.2021.629979
22. Dolgikh O. V., Dianova D. G., Krivtsov A. V., Alikina I. N. Comparative evaluation of the parameters of spermatozoa apoptosis of young and middle-aged men by flow cytometry. Byulleten’ Eksperimental’noy Biologii i Meditsiny. 2021; 172 (10): 501-504. (In Russ.) doi: 10.47056/0365-9615-2021-172-10-501-504
23. Dolgikh O. V., Dianova D. G., Kazakova O. A. Vanadium in the environment as a risk factor causing negative modification of cell death (scientific review). Health Risk Analysis. 2020; (4): 155-168. doi: 10.21668/health.risk/2020.4.18.eng
24. Le Gallo M., Poissonnier A., Blanco P., Legembre P. CD95/Fas, non-apoptotic signaling pathways, and kinases. Front Immunol. 2017; 8: 1216. doi: 10.3389/fimmu.2017.01216
25. Guégan J. P., Legembre P. Nonapoptotic functions of Fas/CD95 in the immune response. FEBS J. 2018; 285 (5): 809-827. doi: 10.1111/febs.14292
26. Yamada A., Arakaki R., Saito M., Kudo Y., Ishimaru N. Dual role of Fas/FasL-mediated signal in peripheral immune tolerance. Front Immunol. 2017; 8: 403. doi: 10.3389/fimmu.2017.00403
27. Castaсeda A. R., Vogel C. F. A., Bein K. J., Hughes H. K., Smiley-Jewell S., Pinkerton K. E. Ambient particulate matter enhances the pulmonary allergic immune response to house dust mite in a BALB/c mouse model by augmenting Th2- and Th17-immune responses. Physiol Rep. 2018; 6 (18):e13827. doi: 10.14814/phy2.13827
Review
For citations:
Dolgikh O.V., Dianova D.G., Nikonoshina N.A. Innate and Adaptive Immunity in Workers of the Main Occupations Exposed to Fine Particulate Matter in Potassium Chloride Production. Public Health and Life Environment – PH&LE. 2022;(4):63-69. (In Russ.) https://doi.org/10.35627/2219-5238/2022-30-4-63-69