Preview

Public Health and Life Environment – PH&LE

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Spatial Cluster Prioritization Analysis of the Distribution of Combinations of Hazardous Air Pollutants in the Regions of the Russian Federation

https://doi.org/10.35627/2219-5238/2025-33-11-63-71

Abstract

Introduction: The territory of the Russian Federation is characterized by a significant number of industrial enterprises, all emitting hazardous air pollutants. The study of spatial distribution of their combinations is relevant for identifying regional characteristics and areas at risk of their spread and human exposure.

 Objective: To conduct a spatial cluster prioritization analysis of the distribution of combinations of hazardous airborne chemicals in the regions of the Russian Federation.

 Materials and methods: The analysis included clustering of the regions by vectors that determine economic development and health of the local population; establishing the optimal number of clusters and comprised regions using the elbow method and k-means. The dynamics of non-compliant ambient air samples was assessed based on data of Rosstat Reporting Form No. 18 for 2014–2024 collected and processed by the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing. Criteria for priority setting included hazard class 1 or 2 of the chemical, its mode of action, and the proportion of exceedances.

Results: We identified five clusters consisting of two to 32 regions having similar characteristics. Large-scale distribution of combinations of airborne chemicals with uneven local zones was established in 59 regions, mainly of the third and fifth clusters, inhabited by almost 66.3 % of the population of the country. The maximum (up to 6.2-fold) increase in the frequency of non-compliant air samples with threshold exceedances of benzo[a]pyrene, fluorine, and oxides of aluminum, copper, and manganese was established in the Sverdlovsk, Kemerovo, Chelyabinsk, and Irkutsk regions, Altai, Krasnoyarsk, and Perm territories.

 Conclusions: We identified clusters comprising 59 densely populated regions with local zones of distribution of two to seven combinations of hazardous air pollutants and a significant proportion of exceedances reaching 20.9 %. Priority was given to seven regions requiring urgent regulatory measures to prevent and mitigate adverse health effects in the exposed population.

About the Authors

M. A. Zemlyanova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Россия

Marina A. Zemlyanova, Dr. Sci. (Med.), Prof., Chief Researcher, Head of the Department of Biochemical and Cytogenetic Diagnostic Methods

82 Monastyrskaya Street, Perm, 614045



Yu. V. Koldibekova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Россия

 Yulia V. Koldibekova, Cand. Sci. (Biol.), Senior Researcher, Head of the Metabolism and Pharmacokinetics Research Laboratory, Department of Biochemical and Cytogenetic Diagnostic Methods

82 Monastyrskaya Street, Perm, 614045



D. A. Kiryanov
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Россия

 Dmitry A. Kiryanov, Cand. Sci. (Tech.), Head of the Department of Mathematical Modeling of Systems and Processes

82 Monastyrskaya Street, Perm, 614045



V. M. Chigvintsev
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Россия

 Vladimir M. Chigvintsev, Cand. Sci. (Phys.-Math.), Researcher, Laboratory of Situational Modeling and Expert-Analytical Methods of Management, Department of Mathematical Modeling of Systems and Processes

82 Monastyrskaya Street, Perm, 614045



L. A. Sitchikhina
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Россия

Lyubov A. Sitchikhina, Junior Researcher, Information and Computing Systems and Technologies Laboratory

82 Monastyrskaya Street, Perm, 614045



References

1. Marchuk NA, Kulentsan AL. [Dynamics of emissions of pollutants by stationary and mobile sources.] Modern Science. 2021;(12-2):373-376. (In Russ.)

2. Klepikov OV, Eprintsev SA, Shekoyan SV. Data analysis of social hygiene monitoring in Russian regions determining environmental and hygienic safety for population. Sanitarnyy Vrach. 2020;(1):60-66. (In Russ.) doi: 10.33920/med-08-2001-08

3. Skovronskaya SA, Meshkov NA, Valtseva EA, Ivanova SV. Priority risk factors for population health in large industrial cities. Gigiena i Sanitariya. 2022;101(4):459-467. (In Russ.) doi: 10.47470/0016-9900-2022-101-4-459-467

4. Klimov PV, Andreeva ES. Assessment of the level of air pollution and aerogenic risk to the health of the people of Novocherkassk. Bezopasnost’ Tekhnogennykh i Prirodnykh Sistem. 2024;8(3):49-56. (In Russ.) doi: 10.23947/2541-9129-2024-8-3-49-56

5. Carlin DJ, Rider CV. Combined Exposures and Mixtures Research: An Enduring NIEHS Priority. Environmental Health Perspectives. 2024;132(7): 07501. doi: 10.1289/EHP14340705

6. Golmohammadi R, Darvishi E. The combined effects of occupational exposure to noise and other risk factors – A systematic review. Noise Health. 2019;21(101):125-141. doi: 10.4103/nah.NAH_4_18

7. Shevlaykov VV, Sychyk SI. Peculiarities related to combined effects produced by chemical allergens mixture. Health Risk Analysis. 2019;(2):130-137. doi: 10.21668/health.risk/2019.2.15.eng

8. Onishchenko GG, Zaitseva NV, Mai IV, et al. Health risk analysis in the strategy of state socio-economic development [Analiz riska zdorov’yu v strategii gosudarstvennogo sotsial’no-ekonomicheskogo razvitiya: monografiya]: v 2 t.; pod obshch. red. G.G. Onishchenko, N.V. Zaitsevoi. 2-e izd., pererab. i dop. Perm’: Izd-vo Perm. nats. issled. politekhn. un-ta, 2024. T. 2. P. 770-772. (In Russ.)

9. Mustafa E, Valente MJ, Vinggaard AM. Complex chemical mixtures: Approaches for assessing adverse human health effects. Curr Opin Toxicol. 2023;34:100404. doi: 10.1016/j.cotox.2023.100404

10. Socianu S, Bopp SK, Govarts E, et al. Chemical mixtures in the EU population: composition and potential risks. International Journal of Environmental Research and Public Health. 2022;19(10):6121. doi: 10.3390/ijerph19106121

11. Shalina TI. The hygienic estimate of the risk for human health among the population in the areas connecting with aluminium production. Sibirskiy Meditsinskiy Zhurnal (Irkutsk). 2009;91(8):128-129. (In Russ.)

12. Szűcs-Somlyó É, Lehel J, Májlinger K, Lőrincz M, Kővágó C. Metal-oxide inhalation induced fever - Immuntoxicological aspects of welding fumes. Food and Chemical Toxicology. 2023;175:113722. doi: 10.1016/j.fct.2023.113722

13. Kővágó C, Szekeres B, Szűcs-Somlyó É, Májlinger K, Jerzsele Á, Lehel J. Preliminary study to investigate the distribution and effects of certain metals after inhalation of welding fumes in mice. Environmental Science and Pollution Research. 2022;29(32):49147-49160. doi: 10.1007/s11356-022-19234-7

14. Venter C, Oberholzer HM, Bester J, van Rooy MJ, Bester MJ. Ultrastructural, confocal and viscoelastic characteristics of whole blood and plasma after exposure to cadmium and chromium alone and in combination: An ex vivo study. Cell Physiol Biochem. 2017;43(3):1288-1300. doi: 10.1159/000481841

15. Shinoda Y, Sadakata T, Yagishita K, et al. Aspects of excitatory/inhibitory synapses in multiple brain regions are correlated with levels of brain-derived neurotrophic factor/neurotrophin-3. Biochem Biophys Res Commun. 2019;509(2):429-434. doi: 10.1016/j.bbrc.2018.12.100

16. Fueldner C, Kohlschmidt J, Riemschneider S, et al. Benzo(a)pyrene attenuates the pattern-recognition-receptor induced proinflammatory phenotype of murine macrophages by inducing IL-10 expression in an aryl hydrocarbon receptor-dependent manner. Toxicology. 2018;409:80-90. doi: 10.1016/j.tox.2018.07.011

17. Fu C, Li Y, Xi H, et al. Benzo(a)pyrene and cardiovascular diseases: An overview of pre-clinical studies focused on the underlying molecular mechanism. Frontiers in Nutrition. 2022;4(9):978475. doi: 10.3389/fnut.2022.978475.

18. Ismatulozoda SI, Muratov AM, Muradov AA. The state of lipid metabolism, lipid peroxidation, antioxidant protection and endothelial dysfunction in refractory dyslipidemia. Vestnik Akademii Meditsinskikh Nauk Tadzhikistana. 2020;10(4):349-356. (In Russ.) doi: 10.31712/2221-7355-2020-10-4-349-356

19. Yadykina TK, Кorotenko OYu, Panev NI, Semenova EA, Zhukova AG, Mikhailova NN. Clinical and experimental studies of cardiovascular disorders in the conditions of fluoride intoxication of the body. Meditsina Truda i Promyshlennaya Ekologiya. 2020;60(6):375-380. (In Russ.) doi: 10.31089/1026-9428-2020-60-6-375-380

20. Shi C, Wei B, Wei S, Wang W, Liu H, Liu J. A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. J Wireless Com Network. 2021;31(2021). doi: 10.1186/s13638-021-01910-w

21. Oksner EP, Murashova EV [Aluminum market research: key trends, factors and prospects.] Jelektronnoe nauchnoe izdanie «Uchenye zametki TOGU». 2024;15(4):177-185. (In Russ.)

22. Kislitsyna VV, Surzhikov DV, Golikov RA, Likontseva YuS. Non-carcinogenic risk to the health of the population of an industrial city from the influence of atmospheric emissions from an aluminum plant. Meditsina v Kuzbasse. 2024;23(3):32-38. (In Russ.) doi: 10.24412/2687-0053-2024-3-32-38

23. Postevaya MA, Slukovskii ZI. Analysis of atmospheric emissions in Murmansk and their relationship with pollution of urban lakes. Vestnik MGTU. Trudy Murmanskogo Gosudarstvennogo Tekhnicheskogo Universiteta. 2021;24(2):190-20. (In Russ.) doi: 10.21443/1560-9278-2021-24-2-190-201

24. Meshchurova TA. Assessment of air pollution in the cities of Perm region. Vestnik Nizhnevartovskogo Gosudarstvennogo Universiteta. 2020;(1):110-119. (In Russ.) doi: 10.36906/2311-4444/20-1/17

25. Dolgushina NA, Kuvshinova IA. Air pollution and non-cancenogenic risk assessment in industrial cities of Chelyabinsk region. Ekologiya Cheloveka (Human Ecology). 2019;(6):17-22. (In Russ.) doi: 10.33396/1728-0869-2019-6-17-22

26. Canhimbue LS, Tolstykh ND, Krivolutskaya NА, Talovina I.V. Morphological features and composition of noble metal minerals in disseminated and massive ores of the central part of the Oktyabrskoe deposit, Norilsk region. Proceedings of higher educational establishments. Geology and Exploration. 2024;66(1):88-98. (In Russ.) doi: 10.32454/0016-7762-2024-66-1-88-98

27. Aleksandrova T, Nikolaeva N, Afanasova A, Romashev A, Aburova V, Prokhorova E. Extraction of Low-Dimensional Structures of Noble and Rare Metals from Carbonaceous Ores Using Low-Temperature and Energy Impacts at Succeeding Stages of Raw Material Transformation. Minerals. 2023;13(1):84. doi: 10.3390/min13010084

28. Vira DYu. [Prospects for the development of Russian copper industry markets in new conditions.] Vestnik Altayskoy akademii ekonomiki i prava. 2024;(3-3):344-354. (In Russ.)

29. Shajhlislamova JR, Karimova LK, Volgareva AD, Muldasheva NA. Labor medicine of employees of under groundprofessions of production of polymetallic copper-zinc ores. Sanitarnyj vrach. 2020;5:9-22 (In Russ.)

30. Glushakova OV, Chernikova OP. Influence of ferrous metallurgy enterprises on atmospheric air quality as an ecological component of territories sustainable development. Report 2. Izvestiya. Ferrous Metallurgy. 2021;64(8):561-571. (In Russ.) doi: 10.17073/0368-0797-2021-8-561-571

31.


Supplementary files

Review

For citations:


Zemlyanova M.A., Koldibekova Yu.V., Kiryanov D.A., Chigvintsev V.M., Sitchikhina L.A. Spatial Cluster Prioritization Analysis of the Distribution of Combinations of Hazardous Air Pollutants in the Regions of the Russian Federation. Public Health and Life Environment – PH&LE. 2025;33(11):63-71. (In Russ.) https://doi.org/10.35627/2219-5238/2025-33-11-63-71

Views: 154

JATS XML

ISSN 2219-5238 (Print)
ISSN 2619-0788 (Online)