Preview

Public Health and Life Environment – PH&LE

Advanced search

Immunological risk factors for community-acquired pneumonia in chrysotile asbestos workers

https://doi.org/10.35627/2219-5238/2020-330-9-79-83

Abstract

Introduction: The paper presents the results of a retrospective analysis of the incidence rates of community-acqduired pneumonia in chrysotile miners and millers in comparison with the adult population of a municipality. It also emonstrates findings of the study of some immune response parameters in Streptococcus pneumoniae carriers among chrysotile asbestos workers. The objective of the research was to study specifics of the development of community-acquired pneumonia and to determine immune indices in healthy workers (Streptococcus pneumoniae carriers) occupationally exposed to chrysotile asbestos. Materials and methods: First, we analyzed community-acquired pneumonia incidence rates in chrysotile asbestos workers. For the retrospective analysis, we extracted comprehensive emergency notifications about cases of infectious disease, food poisoning, acute occupational poisoning, community-acquired pneumonia, and vaccine adverse reactions (Form 058/u) from the Epidemiologic Surveillance Information System maintained by the Sverdlovsk Regional Center for Hygiene and Epidemiology and Federal Statistics Form No. 2 "Information about Infectious and Parasitic Diseases" in the Sverdlovsk Region. We defined jobs and formed three groups of workers with high incidence rates of community-acquired pneumonia: group 1 included workers involved in extraction and transportation of chrysotile asbestos, group 2 consisted of workers of the ore-dressing factory while group 3 included workers of auxiliary subdivisions (logistics, security, administration, central automated control station). In 2011, 2012, 2013, and 2019, the incidence rate of community-acquired pneumonia in workers was significantly higher. The annual increase had been observed since 2016 and reached its maximum of 1,032.97±158.88 in 2019 exceeding the long-term average rate in the industry and the town by 12.77 % and 15 %, respectively. We assessed the immune status and performed a comparative analysis of immunological indices in 143 workers of selected jobs, both carriers and noncarriers of Streptococcus pneumoniae. The carriers demonstrated a significant increase in the production immunoglobulin E indicating general sensitization and immunoglobulin G., a significantly lower relative count of mature T cells, and a higher lymphocyte count in the populations of natural killer cells.

About the Authors

Tatyana V. Bushueva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


N. A. Roslaya
Ural State Medical University
Russian Federation


A. V. Ankudinova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


A. V. Somova
Center for Hygiene and Epidemiology in the Sverdlovsk Region
Russian Federation


A. N. Varaksin
Institute of Industrial Ecology of the Ural Branch of the Russian Academy of Sciences
Russian Federation


A. S. Shastin
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


E. P. Artemenko
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


M. S. Vedernikova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


A. K. Labzova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


Yu. V. Gribova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


M. S. Gagarina
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


References

1. Голубкова А.А., Сомова А.В. Роль Streptococcus pneumoniae в этиологии внебольничных пневмоний в крупном промышленном регионе Российской Федерации // Тихоокеанский медицинский журнал. 2018. № 3 (73). С. 29-33.

2. Сомова А.В., Голубкова А.А. Системообразующие факторы эпидемиологического надзора за внебольничными пневмониями на территории крупной промышленной области и основные направления профилактики. Школа эпидемиологов: теоретические и прикладные аспекты эпидемиологии: Сборник материалов II Всероссийской научно-црактической конференции. Казань: «Практика». 2020. С. 73-74.

3. Чучалин А.Г. Пневмония: актуальная проблема медицины XXI века // Пульмонология. 2015. Т. 25. № 2. С. 133-142. DOI: https://doi.org/10.18093/0869-0189-2015-25-2-133-142

4. Боброва О.И., Карноухова О.Г., Степаненко Л.А. и др. Актуальные проблемы пневмококковой инфекции и вопросы ее специфической профилактики. Сибирский медицинский журнал (Иркутск). 2014. Т. 126. № 3. С. 5-7.

5. Бушуева Т.В., Рослая Н.А. Факторы риска развития внебольничной пневмонии у работников основных профессий производства хризотил-асбеста // Медицина труда и промышленная экология. 2019. Т. 59. № 2. С. 113-116.

6. Брико Н.И., Батыршина Л.Р., Брико А.Н. Оценка прогностической и экономической эффективности вакцинопрофилактики пневмококковой инфекции у мужчин трудоспособного возраста с различными хроническими заболеваниями. Журнал микробиологии, эпидемиологии и иммунобиологии (ЖМЭИ). 2018. (1):17-23. DOI: https://doi.org/10.36233/0372-9311-2018-1-17-23

7. Брико Н.И., Фельдблюм И.В. Иммунопрофилактика инфекционных болезней в России: состояние и перспективы совершенствования. Эпидемиология и вакцинопрофилактика. 2017. № 16 (2). С. 4-9. DOI: https://doi.org/10.31631/2073-3046-2017-16-2-4-9

8. Полибин Р.В., Миндлина А.Я., Герасимов А.А. и др. Сравнительный анализ смертности от инфекционных болезней в Российской Федерации и некоторых странах Европы // Эпидемиология и вакцинопрофилактика. 2017. Т. 16. № 3 (94). С. 4-10. DOI: https://doi.org/10.31631/2073-3046-2017-16-3-4-10

9. Абакушина Е.В., Кузьмина Е.Г., Коваленко Е.И. Основные свойства и функции NK-клеток человека // Иммунология. 2012. № 4. С. 220-224.

10. Lebon A., Verkaik N.J., Labout J.A., et al. Natural antibodies against several pneumococcal virulence proteins in children during the prepneumococcal-vaccine era: the generation R study. Infect Immun. 2011; 79(4):1680-1687. DOI: https://doi.org/10.1128/IAI.01379-10

11. Adamou J.E., Heinrichs J.H., Erwin A.L., et al. Identification and characterization of a novel family of pneumococcal proteins that are protective against sepsis. Infect Immun. 2001; 69(2):949-958. DOI: https://doi.org/10.1128/IAI.69.2.949-958.2001

12. Kroon F.P., van Dissel J.T., Ravensbergen E., et al. Antibodies against pneumococcal polysaccharides after vaccination in HIV-infected individuals: 5-year follow-up of antibody concentrations. Vaccine. 1999; 18(5-6):524-530. DOI: https://doi.org/10.1016/ s0264-410x(99)00240-6

13. Ramos-Sevillano E., Ercoli G., Brown JS. Mechanisms of naturally acquired immunity to Streptococcus pneumoniae. Front Immunol. 2019; (10):358. DOI: https://doi.org/10.3389/fimmu.2019.00358

14. Matsuzaki H., Maeda M., Lee S., et al. Asbestos-induced cellular and molecular alteration of immunocompetent cells and their relationship with chronic inflammation and carcinogenesis. Biomed Res Int. 2012; article ID 492608. DOI: https://doi.org/10.1155/2012/492608

15. Welte T., Torres A., Nathwani D. Clinical and economic burden of community-acquired pneumonia among adults in Europe. Thorax. 2012; 67(1):71-79 DOI: http://dx.doi.org/10.1136/thx.2009.129502

16. Suzuki M., Dhoubhadel B.G., Katoh S., et al. 23-valent pneumococcal polysaccharide vaccine against pneumococcal pneumonia. Lancet. 2017; 17(8):803-804 DOI: https://doi.org/10.1016/S1473-3099(17)30411-5

17. Rodriguez F., Bolibar I., Serra-Prat M., et al. Poor oral health as risk factor for community-acquired pneumonia. J Pulm Respir Med. 2014; 4:203. DOI: https://doi.org/10.4172/2161-105X.1000203

18. Grigg J., Miyashita L., Suri R. Pneumococcal infection of respiratory cells exposed to welding fumes; Role of oxidative stress and HIF-1 alpha. PLoS One. 2017; 12(3):e0173569. DOI: https://doi.org/10.1371/journal.pone.0173569

19. Almirall J., Serra-Prat M., Bolibar I, et al. Risk factors for community-acquired pneumonia in adults: A systematic review of observational studies. Respiration. 2017; 94(3):299-311. DOI: https://doi.org/10.1159/000479089

20. Jo B.S., Lee J., Cho Y., et al. Risk factors associated with mortality from pneumonia among patients with pneumoconiosis. Ann Occup Environ Med. 2016; 28(1):19. DOI: https://doi.org/10.1186/s40557-016-0103-6

21. Palmer K.T., Cullinan P., Rice S., et al. Mortality from infectious pneumonia in metal workers: a comparison with deaths from asthma in occupations exposed to respiratory sensitisers. Thorax. 2009; 64(11):983-986. DOI: http://dx.doi.org/10.1136/thx.2009.114280

22. Maeda M., Nishimura Y., Kumagai N., et al. Dysregulation of the immune system caused by silica and asbestos. JImmunotoxicol. 2010; 7(4):268-278. DOI: https://doi.org/10.3109/1547691X.2010.512579

23. Suri R., Periselneris J., Lanone S., et al. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae. J Allergy Clin Immunol. 2015; 137(2):527-534. DOI: https://doi.org/10.1016/j.jaci.2015.06.033

24. Mushtaq N., Ezzati M., Hall L., et al. Adhesion of Streptococcus pneumoniae to human airway epithelial cells exposed to urban particulate matter. J Allergy Clin Immunol. 2011; 127(5):1236-1242. DOI: https://doi.org/10.1016/jjaci.2010.11.039

25. Nishimura Y., Miura Y., Maeda M., et al. Impairment in cytotoxicity and expression of NK cell-activating receptors on human NK cells following exposure to asbestos fibers. Int J Immunopathol Pharmacol. 2009; 22(3):579-590. DOI: https://doi.org/10.1177/039463200902200304

26. Diao W.Q., Shen N., Yu P.X., et al. Efficacy of 23-valent pneumococcal polysaccharide vaccine in preventing community-acquired pneumonia among immunocompetent adults: a systematic review and metaanalysis of randomized trials. Vaccine. 2016; 34(13):1496-1503. DOI: https://doi.org/10.1016/j.vaccine.2016.02.023


Review

For citations:


Bushueva T.V., Roslaya N.A., Ankudinova A.V., Somova A.V., Varaksin A.N., Shastin A.S., Artemenko E.P., Vedernikova M.S., Labzova A.K., Gribova Yu.V., Gagarina M.S. Immunological risk factors for community-acquired pneumonia in chrysotile asbestos workers. Public Health and Life Environment – PH&LE. 2020;(9):79-83. (In Russ.) https://doi.org/10.35627/2219-5238/2020-330-9-79-83

Views: 297


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-5238 (Print)
ISSN 2619-0788 (Online)