The experimental study of cardiotoxic effects of lead oxide nanoparticles by their various routes of exposure
https://doi.org/10.35627/2219-5238/2020-330-9-67-72
Abstract
About the Authors
Ilzira A. MinigalievaRussian Federation
M. P. Sutunkova
Russian Federation
S. V. Klinova
Russian Federation
S. N. Solovyeva
Russian Federation
L. I. Privalova
Russian Federation
V. B. Gurvich
Russian Federation
I. N. Chernyshov
Russian Federation
Yu. V. Ryabova
Russian Federation
T. V. Bushueva
Russian Federation
V. Ya. Shur
Russian Federation
E. V. Shishkina
Russian Federation
B. A. Katsnelson
Russian Federation
References
1. Сутункова М.П., Макеев О.Г., Привалова Л.И. и др. Генотоксический эффект воздействия некоторых элементных или элементнооксидных наночастиц и его ослабление комплексом биопротекторов // Медицина труда и промышленная экология. 2018. № 11. С. 10-15.
2. Гатагонова Т.М. Биоэлектрическая активность миокарда и насосная функция сердца у рабочих, занятых в производстве свинца // Гигиена и санитария. 1995. № 3. С. 16-19.
3. Соркина Н.С., Кузьмина Л.П., Артемова Л.В. и др. Некоторые вопросы воздействия свинца на заболеваемость органов кровообращения и дыхания // Медицина труда и промышленная экология. 2019. Т. 59. № 12. С. 983-988.
4. Шубина О.С., Бардин В.С., Мельникова Н.А. и др. Изменение морфологического состояния сердца крыс в условиях хронической интоксикации ацетатом свинца // Фундаментальные исследования. 2011. № 7. С. 230-232.
5. Сушанло Р.Ш. Влияние свинцовой интоксикации и гипоксии на сердечно-сосудистую систему (литературный обзор) // Сибирский медицинский журнал (г. Томск). 2016. Т. 31. № 3. С. 33-38.
6. Довгаль Г.В., Шевченко И.В. Нарушения раннего морфогенеза сердца в условиях введения ацетата свинца // Морфология. 2018. Т. 12. № 3. С. 66-73.
7. Sutunkova M.P., Solovyeva S.N., Katsnelson B.A., et al. A paradoxical response of the rat organism to long-term inhalation of silica-containing submicron (predominantly nanoscale) particles of a collected industrial aerosol at realistic exposure levels. Toxicology. 2017; 384:59-68. DOI: https://doi.org/10.1016/j.tox.2017.04.010
8. Sutunkova M.P., Solovyeva S.N., Minigalieva I.A., et al. Toxic effects of low-level long-term inhalation exposures of rats to nickel oxide nanoparticles. Int J Mol Sci. 2019; 20(7), 1778. DOI: https://doi.org/10.3390/ijms20071778
9. Sutunkova M.P., Solovyeva S.N., Katsnelson B.A., et al. Organism’s responses to a long-term inhalation of silica-containing submicron particles of an industrial aerosol. Toxicol Lett. 2017; 280(Suppl 1):S316. DOI: https://doi.org/10.1016/j.toxlet.2017.08.052
10. Glenn B.S., Stewart W.F., Schwartz B.S., et al. Relation of alleles of the sodium-potassium adenosine triphosphatase alpha 2 gene with blood pressure and lead exposure. Am J Epidemiol. 2001; 153(6):537-45. DOI: https://doi.org/10.1093/aje/153.6.537
11. Glenn B.S., Stewart W.F., Links J.M., et al. The longitudinal association of lead with blood pressure. Epidemiology. 2003; 14(1):30-36. DOI: https://doi.org/10.1097/00001648-200301000-00011
12. Glenn B.S., Bandeen-Roche K., Lee B.K., et al. Changes in systolic blood pressure associated with lead in blood and bone. Epidemiology. 2006; 17(5):538-544. DOI: https://doi.org/10.1097/01.ede.0000231284.19078.4b
13. Navas-Acien A., Guallar E., Silbergeld E.K., et al. Lead exposure and cardiovascular disease - A systematic review. Environ Health Perspect. 2007; 115(3):472-482. DOI: https://doi.org/10.1289/ehp.9785
14. Fiorim J., Ribeiro Junior R.F., Silveira E.A., et al. Low-level lead exposure increases systolic arterial pressure and endothelium-derived vasodilator factors in rat aortas. PLoS One. 2011; 6(2):e17117. DOI: https://doi.org/10.1371/journal.pone.0017117
15. Carmignani M., Boscolo P., Poma A., et al. Kininergic system and arterial hypertension following chronic exposure to inorganic lead. Immunopharmacol. 1999; 44(1-2):105-110. DOI: https://doi.org/10.1016/s0162-3109(99)00115-0
16. Carmignani M., Volpe A.R., Boscolo P., et al. Catcholamine and nitric oxide systems as targets of chronic lead exposure in inducing selective functional impairment. Life Sci. 2000; 68(4):401-415. DOI: https://doi.org/10.1016/s0024-3205(00)00954-1
17. Simхes M.R., Ribeiro Jünior R.F., Vescovi M.V., et al. Acute lead exposure increases arterial pressure: role of the renin-angiotensin system. PLoS One. 2011; 6(4):e18730. DOI: https://doi.org/10.1371/journal.pone.0018730
18. Vaziri N.D., Norris K. Lipid disorders and their relevance to outcomes in chronic kidney disease. Blood Purif. 2011; 31(1-3):189-196. DOI: https://doi.org/10.1159/000321845
19. Silveira E.A., Siman F.D., de Oliveira F.T., et al. Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas. Free Radic Biol Med. 2014; 67:366-376. DOI: https://doi.org/10.1016/freeradbiomed.2013.11.021
20. Gidlow D.A. Lead toxicity. Occup Med. 2015; 65(5):348-356. DOI: https://doi.org/10.1093/occmed/kqv018
21. Klinova S.V., Minigalieva I.A., Privalova L.I., et al. Further verification of some postulates of the combined toxicity theory: New animal experimental data on separate and joint adverse effects of lead and cadmium. Food Chem Toxicol. 2020; 136:110971. DOI: https://doi.org/10.1016/j.fct.2019.110971
Review
For citations:
Minigalieva I.A., Sutunkova M.P., Klinova S.V., Solovyeva S.N., Privalova L.I., Gurvich V.B., Chernyshov I.N., Ryabova Yu.V., Bushueva T.V., Shur V.Ya., Shishkina E.V., Katsnelson B.A. The experimental study of cardiotoxic effects of lead oxide nanoparticles by their various routes of exposure. Public Health and Life Environment – PH&LE. 2020;(9):67-72. (In Russ.) https://doi.org/10.35627/2219-5238/2020-330-9-67-72