Preview

Public Health and Life Environment – PH&LE

Advanced search

The experimental study of cardiotoxic effects of lead oxide nanoparticles by their various routes of exposure

https://doi.org/10.35627/2219-5238/2020-330-9-67-72

Abstract

Background: Lead oxide nanoparticles are emitted in the workplace air of copper smelters. They are also a by-product in many other metallurgical industries. Objectives: Adverse health effects of lead oxide nanoparticles (PbO-NPs) were assessed in vivo using various routes of exposure with special attention paid to particle cardiotoxicity. Materials and methods: The subacute inhalation experiments were conducted on outbred female rats exposed to the generated aerosol of PbO-NPs in the concentration of 1.30 ± 0.10 mg/m3, 4 hours a day during five consecutive days, using the Nose-Only Inhalation Exposure System. The study of subchronic exposure to PbO-NPs was conducted on male rats using intraperitoneal injections made thrice a week during six weeks (18 injections in total). Conclusions: Following both types of exposure to PbO-NPs, we observed changes in toxicological indices including those specific for lead including a decrease in hemoglobin counts, an increase in blood reticulocyte counts and urine concentrations of δ-aminolevulenic acid. The subacute inhalation exposure to PbO-NPs affected electrocardiographic findings in animals (an increase in amplitudes of P and T waves) while the subchronic intraperitoneal injections decreased blood pressure and changed biochemical indices of the cardiovascular system (decreased activity of the angiotensin-converting enzyme and the concentration of endodelin-1).

About the Authors

Ilzira A. Minigalieva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


M. P. Sutunkova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


S. V. Klinova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


S. N. Solovyeva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


L. I. Privalova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


V. B. Gurvich
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


I. N. Chernyshov
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


Yu. V. Ryabova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


T. V. Bushueva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


V. Ya. Shur
Ural Federal University
Russian Federation


E. V. Shishkina
Ural Federal University
Russian Federation


B. A. Katsnelson
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation


References

1. Сутункова М.П., Макеев О.Г., Привалова Л.И. и др. Генотоксический эффект воздействия некоторых элементных или элементнооксидных наночастиц и его ослабление комплексом биопротекторов // Медицина труда и промышленная экология. 2018. № 11. С. 10-15.

2. Гатагонова Т.М. Биоэлектрическая активность миокарда и насосная функция сердца у рабочих, занятых в производстве свинца // Гигиена и санитария. 1995. № 3. С. 16-19.

3. Соркина Н.С., Кузьмина Л.П., Артемова Л.В. и др. Некоторые вопросы воздействия свинца на заболеваемость органов кровообращения и дыхания // Медицина труда и промышленная экология. 2019. Т. 59. № 12. С. 983-988.

4. Шубина О.С., Бардин В.С., Мельникова Н.А. и др. Изменение морфологического состояния сердца крыс в условиях хронической интоксикации ацетатом свинца // Фундаментальные исследования. 2011. № 7. С. 230-232.

5. Сушанло Р.Ш. Влияние свинцовой интоксикации и гипоксии на сердечно-сосудистую систему (литературный обзор) // Сибирский медицинский журнал (г. Томск). 2016. Т. 31. № 3. С. 33-38.

6. Довгаль Г.В., Шевченко И.В. Нарушения раннего морфогенеза сердца в условиях введения ацетата свинца // Морфология. 2018. Т. 12. № 3. С. 66-73.

7. Sutunkova M.P., Solovyeva S.N., Katsnelson B.A., et al. A paradoxical response of the rat organism to long-term inhalation of silica-containing submicron (predominantly nanoscale) particles of a collected industrial aerosol at realistic exposure levels. Toxicology. 2017; 384:59-68. DOI: https://doi.org/10.1016/j.tox.2017.04.010

8. Sutunkova M.P., Solovyeva S.N., Minigalieva I.A., et al. Toxic effects of low-level long-term inhalation exposures of rats to nickel oxide nanoparticles. Int J Mol Sci. 2019; 20(7), 1778. DOI: https://doi.org/10.3390/ijms20071778

9. Sutunkova M.P., Solovyeva S.N., Katsnelson B.A., et al. Organism’s responses to a long-term inhalation of silica-containing submicron particles of an industrial aerosol. Toxicol Lett. 2017; 280(Suppl 1):S316. DOI: https://doi.org/10.1016/j.toxlet.2017.08.052

10. Glenn B.S., Stewart W.F., Schwartz B.S., et al. Relation of alleles of the sodium-potassium adenosine triphosphatase alpha 2 gene with blood pressure and lead exposure. Am J Epidemiol. 2001; 153(6):537-45. DOI: https://doi.org/10.1093/aje/153.6.537

11. Glenn B.S., Stewart W.F., Links J.M., et al. The longitudinal association of lead with blood pressure. Epidemiology. 2003; 14(1):30-36. DOI: https://doi.org/10.1097/00001648-200301000-00011

12. Glenn B.S., Bandeen-Roche K., Lee B.K., et al. Changes in systolic blood pressure associated with lead in blood and bone. Epidemiology. 2006; 17(5):538-544. DOI: https://doi.org/10.1097/01.ede.0000231284.19078.4b

13. Navas-Acien A., Guallar E., Silbergeld E.K., et al. Lead exposure and cardiovascular disease - A systematic review. Environ Health Perspect. 2007; 115(3):472-482. DOI: https://doi.org/10.1289/ehp.9785

14. Fiorim J., Ribeiro Junior R.F., Silveira E.A., et al. Low-level lead exposure increases systolic arterial pressure and endothelium-derived vasodilator factors in rat aortas. PLoS One. 2011; 6(2):e17117. DOI: https://doi.org/10.1371/journal.pone.0017117

15. Carmignani M., Boscolo P., Poma A., et al. Kininergic system and arterial hypertension following chronic exposure to inorganic lead. Immunopharmacol. 1999; 44(1-2):105-110. DOI: https://doi.org/10.1016/s0162-3109(99)00115-0

16. Carmignani M., Volpe A.R., Boscolo P., et al. Catcholamine and nitric oxide systems as targets of chronic lead exposure in inducing selective functional impairment. Life Sci. 2000; 68(4):401-415. DOI: https://doi.org/10.1016/s0024-3205(00)00954-1

17. Simхes M.R., Ribeiro Jünior R.F., Vescovi M.V., et al. Acute lead exposure increases arterial pressure: role of the renin-angiotensin system. PLoS One. 2011; 6(4):e18730. DOI: https://doi.org/10.1371/journal.pone.0018730

18. Vaziri N.D., Norris K. Lipid disorders and their relevance to outcomes in chronic kidney disease. Blood Purif. 2011; 31(1-3):189-196. DOI: https://doi.org/10.1159/000321845

19. Silveira E.A., Siman F.D., de Oliveira F.T., et al. Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas. Free Radic Biol Med. 2014; 67:366-376. DOI: https://doi.org/10.1016/freeradbiomed.2013.11.021

20. Gidlow D.A. Lead toxicity. Occup Med. 2015; 65(5):348-356. DOI: https://doi.org/10.1093/occmed/kqv018

21. Klinova S.V., Minigalieva I.A., Privalova L.I., et al. Further verification of some postulates of the combined toxicity theory: New animal experimental data on separate and joint adverse effects of lead and cadmium. Food Chem Toxicol. 2020; 136:110971. DOI: https://doi.org/10.1016/j.fct.2019.110971


Review

For citations:


Minigalieva I.A., Sutunkova M.P., Klinova S.V., Solovyeva S.N., Privalova L.I., Gurvich V.B., Chernyshov I.N., Ryabova Yu.V., Bushueva T.V., Shur V.Ya., Shishkina E.V., Katsnelson B.A. The experimental study of cardiotoxic effects of lead oxide nanoparticles by their various routes of exposure. Public Health and Life Environment – PH&LE. 2020;(9):67-72. (In Russ.) https://doi.org/10.35627/2219-5238/2020-330-9-67-72

Views: 288


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-5238 (Print)
ISSN 2619-0788 (Online)