Preview

Public Health and Life Environment – PH&LE

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Microbiological Monitoring within the System of Epidemiological Surveillance of Infections Caused by Pseudomonas aeruginosa

https://doi.org/10.35627/2219-5238/2025-33-1-73-81

Abstract

Introduction: According to the World Health Organization, Pseudomonas aeruginosa as a causative agent of purulent inflammation is a microorganism with a critical priority level due to the presence of numerous pathogenicity factors and a high level of acquired antibiotic resistance.

Objective: To study phenotypic characteristics of P. aeruginosa clinical isolates and to analyze their molecular genetic features.

Materials and methods: We analyzed 103 P. aeruginosa isolates. The phenotype of sensitivity to antibacterial drugs was determined using the disk diffusion test while the minimum inhibitory concentration of colistin was determined using the MIC Colistin kit. The Illumina iSeq (Illumina, USA) was used for genome-wide sequencing.

Results: Typical biochemical activity was characteristic of all strains. 90 % of the analyzed P. aeruginosa strains showed phenotypic resistance to penicillin, half of the isolates were resistant to cefepime and ceftazidime, and two thirds of the strains were sensitive to ceftazidime/avibactam. Imipenem was active against 10.0 % of the strains, meropenem – against 38.0 %. When testing doripenem, 84.8 % of the strains were in the category of moderately resistant; amikacin and tobramycin showed high activity in vitro, with colistin exhibiting the maximum activity. Numerous determinants of pathogenicity factors were found in the genome of all sequenced strains of P. aeruginosa, including pyoverdin and pyochelin siderophores, genes encoding the production of exotoxins ExoS, ExoT, ExoY, and ExoU. The algT gene was detected in nine strains of P. aeruginosa accounting for a hypermucoid phеnotype. The tss gene, which is a key factor in the pathogenicity of P. aeruginosa, was found in all strains. The structure of the resistome of P. aeruginosa strains includes genes encoding various beta-lactamases of the OXA, PDC and VEB groups. The blaVIM-2 metal-beta-lactamase gene was found in one strain. Mutations in the OprD gene responsible for changing the structure of porin channels were found in nine P. aeruginosa strains, and mutations in the МехА, B, and D activation genes of efflux pumps were found in 11 strains.

Conclusion: Regular microbiological monitoring makes it possible to track the circulation of antibiotic-resistant strains and is an important tool for ensuring epidemiological safety.

About the Authors

N. A. Gordinskaya
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Russian Federation

 Natalia A. Gordinskaya, Dr. Sci. (Med.), Senior Researcher, Microbiology Laboratory

71 Malaya Yamskaya Street, Nizhny Novgorod, 603950



N. F. Brusnigina
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Russian Federation

Nina F. Brusnigina, Cand. Sci. (Med.), Head of the Laboratory of Metagenomics and Molecular Indication of Pathogens

71 Malaya Yamskaya Street, Nizhny Novgorod, 603950



A. E. Alekseeva
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Russian Federation

Anna E. Alekseeva, Cand. Sci. (Biol.), Senior Researcher, Laboratory of Metagenomics and Molecular Indication of Pathogens

71 Malaya Yamskaya Street, Nizhny Novgorod, 603950



E. V. Boriskina
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Russian Federation

Elena V. Boriskina, Junior Researcher, Microbiology Laboratory

71 Malaya Yamskaya Street, Nizhny Novgorod, 603950



M. A. Makhova
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Russian Federation

Mariya A. Makhova, Cand. Sci. (Biol.), Senior Researcher, Laboratory of Metagenomics and Molecular Indication of Pathogens

71 Malaya Yamskaya Street, Nizhny Novgorod, 603950



I. S. Shkurkina
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Russian Federation

Irina S. Shkurkina, Junior Researcher, Microbiology Laboratory

71 Malaya Yamskaya Street, Nizhny Novgorod, 603950

 



References

1. Goryainova AV, Polikarpova SV, Semykin SYu, Kashirskaya NYu, Mikhalaki PI. Tobramycin activity for Pseudomonas Aeruginosa spp. isolated in cystic fibrosis patients. Doctor.ru. 2021;20(3):17–23. (In Russ.) doi: 10.31550/1727-2378-2021-20-3-17-23

2. Lyamin AV, Zolotov MO, Kondratenko OV, Maksimova EA, Ismatullin DD, Bochkareva PV. Prevalence of antimicrobial-resistant Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis. Meditsinskiy Sovet. 2023;17(20):114–120. (In Russ.) doi: 10.21518/ms2023-346

3. Noskova OA, Savilov ED, Chemezova NN, Belkova NL. Antibiotic resistance of pathogens of generalized purulent septic infections in children. Epidemiologiya i Vaktsinoprofilaktika. 2020;19(6):56-61. (In Russ.) doi: 10.31631/2073-3046-2020-19-6-56-61

4. Potapov AF, Shamaeva SH, Ivanova AA, Semenova SV. Wound microflora and antibiotic resistance in burn patients. Tikhookeanskiy Meditsinskiy Zhurnal. 2023;(1):81-85. (In Russ.) doi: 10.34215/1609-1175-2023-1-81-85

5. Sadeeva ZZ, Novikova IE, Alyabyeva NM, Lazareva AV, Karaseva OV, Fisenko AP. Characterization of Pseudomonas aeruginosa isolated from positive samples of hemocultures and cerebrospinal fluid of children. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii. 2022;99(3):309–321. (In Russ.) doi: 10.36233/0372-9311241

6. Sheremet AB, Nesterenko LN, Zigangirova NA. The Type Three Secretion System of Pseudomonas aeruginosa as a target for development of antivirulence drugs. Mol Genet Microbiol Virol. 2020;35:1-13. doi: 10.3103/S0891416820010073

7. Ladhani HA, Yowler CJ, Claridge JA. Burn wound colonization, infection, and sepsis. Surg Infect (Larchmt). 2021;22(1):44-48. doi: 10.1089/sur.2020.346

8. Skachkova TS, Kniazeva EV, Goloveshkina EN, et al. The prevalence of genetic determinants of antibiotic resistance, which are of particular epidemiological consequences, in the microbiota of the oropharyngeal swabs in patients with cystic fibrosis. Epidemiologiya i Vaktsinoprofilaktika. 2023;22(4):44-48. (In Russ.) doi: 10.31631/2073-3046-2023-22-4-44-48

9. Tsolakidis S, Freytag DL, Dovern E, et al. Infections in burn patients: A retrospective view over seven years. Medicina (Kaunas). 2022;58(8):1066. doi: 10.3390/medicina58081066

10. Li Y, Roberts JA, Walker MM, Aslan AT, Harris PN, Sime FB. The global epidemiology of ventilator-associated pneumonia caused by multi-drug resistant Pseudomonas aeruginosa: A systematic review and meta-analysis. Int J Infect Dis. 2024;139:78-85. doi: 10.1016/j.ijid.2023.11.023

11. Kosheleva IA, Izmalkova TYu, Sazonova OI, et al. Antibiotic-resistant microorganisms and multiple drug resistance determinants in Pseudomonas bacteria from Pushchino water treatment facilities. Mikrobiologiya. 2021;90(2):179-190. (In Russ.) doi: 10.31857/S0026365621020087

12. Li X, Gu N, Huang TY, Zhong F, Peng G. Pseudomonas aeruginosa: A typical biofilm forming pathogen and an emerging but underestimated pathogen in food processing. Front Microbiol. 2023;13:1114199. doi: 10.3389/fmicb.2022.1114199

13. Zhang X, Zhu Y, Gao Y, Li W, Wang Y, Li Y. Evaluation and analysis of multidrug resistance- and hypervirulence-associated genes in carbapenem-resistant Pseudomonas aeruginosa strains among children in an area of China for five consecutive years. Front Microbiol. 2023;14:1280012. doi: 10.3389/fmicb.2023.1280012

14. Bocharova YuA, Savinova TA, Lyamin AV, et al. Genome features and antibiotic resistance of Pseudomonas aeruginosa strains isolated in patients with cystic fibrosis in the Russian Federation. Klinicheskaya Laboratornaya Diagnostika. 2021;66(10):629-634. (In Russ.) doi: 10.51620/0869-2084-2021-66-10-629-634

15. Bocharova YuA, Savinova TA, Mayansky NA, Chebotar IV. New mutations in genes associated with cefiderocol resistance in a clinical isolate of Pseudomonas aeruginosa. Klinicheskaya Mikrobiologiya i Antimikrobnaya Khimioterapiya. 2023;25(4):401-407. (In Russ.) doi: 10.36488/cmac.2023.4.401-407

16. Savinova TA, Samchenko AA, Bocharova YA, Mayansky NA, Chebotar IV. Computer program for detection and analyzing the porin-mediated antibiotic resistance of bacteria. Sovremennye Tekhnologii v Meditsine. 2021;13(6):15–23. (In Russ.) doi: 10.17691/stm2021.13.6.02

17. European Committee for the Determination of Antimicrobial Sensitivity. Tables of boundary values for the interpretation of MPC values and diameters of growth suppression zones. Version 13.0, 2023. Accessed January 24, 2025. https://www.eucast.org

18. Astashkin EI, Lev AI, Ershova ON, et al. Three novel class 1 integrons detected in multidrug-resistant Pseudomonas aeruginosa hospital strains. Mol Genet Microbiol Virol. 2019;34:8-15. doi: 10.3103/S0891416819010026

19. Khokhlova OE, Vladimirov IV, Kozlov RS, et al. Molecular-genetic mechanisms of resistance to antibiotic of the pathogens in patients with thermal burns and infection. Mol Genet Microbiol Virol. 2022;37(4):187-193. doi: 10.3103/S0891416822040024

20. Hao M, Ma W, Dong X, Li X, Cheng F, Wang Y. Comparative genome analysis of multidrug-resistant Pseudomonas aeruginosa JNQH-PA57, a clinically isolated mucoid strain with comprehensive carbapenem resistance mechanisms. BMC Microbiol. 2021;21(1):133. doi: 10.1186/s12866-021-02203-4

21. Bocharova Y, Savinova T, Lasareva A, et al. Genotypes, carbapenemase carriage, integron diversity and oprD alterations among carbapenem-resistant Pseudomonas aeruginosa from Russia. Int J Antimicrob Agents. 2020;55(4):105899. doi: 10/1016/J.ijantimicag.2020.105899

22. Aguilar-Rodea P, Zúñiga G, Cerritos R, et al. Nucleotide substitutions in the mexR, nalC and nalD regulator genes of the MexAB-OprM efflux pump are maintained in Pseudomonas aeruginosa genetic lineages. PLoS One. 2022;17(5):e0266742. doi: 10.1371/journal.pone.0266742

23. Skurikhina YuE, Turkutyukov VB. Microbiological and molecular genetic aspects of antibiotic resistance of Pseudomonas aeruginosa and Acinetobacter baumannii. Epidemiologiya i Vaktsinoprofilaktika. 2019;18(6):34-38. (In Russ.) doi: 10.31631/2073-3046-2019-18-6-34-38

24. Del Barrio-Tofiño E, López-Causapé C, Oliver A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally acquired β-lactamases: 2020 update. Int J Antimicrob Agents. 2020;56(6):106196. doi: 10.1016/j.ijantimicag.2020.106196

25. Tchakal-Mesbahi A, Metref M, Singh VK, Almpani M, Rahme LG. Characterization of antibiotic resistance profiles in Pseudomonas aeruginosa isolates from burn patients. Burns. 2021;47(8):1833-1843. doi: 10.1016/j.burns.2021.03.005

26. Kocsis B, Gulyás D, Szabó D. Diversity and distribution of resistance markers Pseudomonas aeruginosa international high-risk clones. Microorganisms. 2021;9(2):359. doi: 10.3390/microorganisms9020359

27. Yang K, Xiao T, Shi Q, et al. Socioeconomic burden of bloodstream infections caused by carbapenem-resistant and carbapenem-susceptible Pseudomonas aeruginosa in China. J Glob Antimicrob Resist. 2021;26:101-107. doi: 10.1016/j.jgar.2021.03.032

28. Teelucksingh K, Shaw E. Clinical characteristics, appropriateness of empiric antibiotic therapy and outcome of Pseudomonas aeruginosa bacteriemia across multiple community hospitals. Eur J Clin Microbiol Infect Dis. 2022;41(1):53-62. doi: 10.1007/s10096-021-04342-y

29. Savinova TA, Bocharova YuA, Chaplin AV, et al. Meropenem-induced reduction in colistin susceptibility in Pseudomonas aeruginosa strain ATCC 27853. Bulletin of Russian State Medical University. 2022;(1):30-34. doi: 10.24075/brsmu.2022.001

30. Hameed F, Khan MА, Muhammad H, Sarwar T, Bilal H, Rehman TU. Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: First report from Pakistan. Rev Soc Bras Med Trop. 2019;52:e20190237. doi: 10.1590/0037-8682-0237-019


Review

For citations:


Gordinskaya N.A., Brusnigina N.F., Alekseeva A.E., Boriskina E.V., Makhova M.A., Shkurkina I.S. Microbiological Monitoring within the System of Epidemiological Surveillance of Infections Caused by Pseudomonas aeruginosa. Public Health and Life Environment – PH&LE. 2025;33(1):73–81. (In Russ.) https://doi.org/10.35627/2219-5238/2025-33-1-73-81

Views: 109


ISSN 2219-5238 (Print)
ISSN 2619-0788 (Online)