Integration of Information Technology in West Nile Virus Surveillance in the Russian Federation
https://doi.org/10.35627/2219-5238/2025-33-4-69-77
Abstract
Introduction: The relevance of the problem discussed in this article is determined by the demand for effective ITassisted surveillance of the causative agent of West Nile fever at the national level.
Objective: To summarize the experience in integrating information technology into practical monitoring of the West Nile virus in the Russian Federation and to outline opportunities for improvement.
Materials and methods: We reviewed publications issued in 1999–2024 and indexed in international and domestic scientific bibliographic databases (PubMed, Scopus, and Russian Science Citation Index), reference epidemiologic editions, and electronic information resources. The search was conducted using the following keywords: West Nile fever, information technology, epidemiological surveillance, and pathogen monitoring. Of 6,799 search results, we selected 20 full-text publications corresponding to the purpose of the study and describing integration of various IT aspects in West Nile virus monitoring in the Russian Federation.
Results: The developed solutions are widely implemented in epidemiological surveillance subsystems at all organizational levels. They enable case identification, record-keeping of circulating virus genotypes, monitoring organization, and adjustment of sanitary and anti-epidemic (preventive) measures. Their prospects include establishing opportunities and regulatory frameworks, development of a unified platform for data accumulation and inventory of the natural foci of infection, and improving research into epidemiological situation forecasting.
Conclusions: The efficiency of West Nile virus surveillance has been significantly improved through created electronic databases, systems of information analysis, and GIS-based developments. However, the task of forecasting the epidemiological situation using predictive analytics models remains unresolved.
About the Authors
D. N. NikitinRussian Federation
Dmitrii N. Nikitin, Cand. Sci. (Med.), Researcher, Laboratory of Epidemiological Analysis and Entomological Monitoring
S. K. Udovichenko
Russian Federation
Svetlana K. Udovichenko, Cand. Sci. (Med.), Leading Researcher, Laboratory of Epidemiological Analysis and Entomological Monitoring
E. V. Putintseva
Russian Federation
Elena V. Putintseva, Cand. Sci. (Med.), Leading Researcher, Laboratory of Epidemiological Analysis and Entomological Monitoring
A. V. Toporkov
Russian Federation
Andrey V. Toporkov, Dr. Sci. (Med.), Assoc. Prof., Director
References
1. Singh P, Khatib MN, Ballal S, et. al. West Nile Virus in a changing climate: epidemiology, pathology, advances in diagnosis and treatment, vaccine designing and control strategies, emerging public health challenges - a comprehensive review. Emerg Microbes Infect. 2025;14(1):2437244. doi: 10.1080/22221751.2024.2437244
2. Lu L, Zhang F, Oude Munnink BB, et. al. West Nile virus spread in Europe: Phylogeographic pattern analysis and key drivers. PLoS Pathog. 2024;20(1):e1011880. doi: 10.1371/journal.ppat.1011880
3. Llorente F. West Nile Virus Infection. Pathogens. 2023;12(2):151. doi: 10.3390/pathogens12020151
4. Karim SU, Bai F. Introduction to West Nile Virus. Methods Mol Biol. 2023;2585:1-7. doi: 10.1007/978-1-0716-2760-0_1
5. Nikitin DN, Udovichenko SK, Putintseva EV, Toporkov AV. West Nile fever: manifestations of the epidemic process in the world. Infektsionnye Bolezni: Novosti, Mneniya, Obuchenie. 2024;13(4):94-101. (In Russ.) doi: 10.33029/2305-3496-2024-13-4-94-101
6. Klimova EA, Karetkina GN, Shakaryan AK, et. al. West Nile fever on the territory of the Moscow agglomeration. Infektsionnye Bolezni: Novosti, Mneniya, Obuchenie. 2021;10(4):13-21. (In Russ.) doi: 10.33029/2305-3496-2021-10-4-13-21
7. Putintseva EV, Udovichenko SK, Nikitin DN, Boroday NV, Antonov AS, Toporkov AV. West Nile Fever: Analysis of the Epidemiological Situation in the Russian Federation in 2023, Forecast for 2024. Problems of Particularly Dangerous Infections. 2024;(1):89-101. (In Russ.) doi: 10.21055/0370-1069-2024-1-89-101
8. Solntsev LA, Zaitseva NN, Efimov EI. Electronic System of Storage, Representation, and Analysis of Epidemiological Information on a Federal District Scale. Sovremennye tehnologii v medicine 2017;9(4):170-176. (In Russ.) doi: 10.17691/stm2017.9.4.21
9. Vodyanitskaya SYu, Sudina LV, Logvin FV, Vodopjanov AS, Kireev YuG, Batashev VV. GIS-technologies in the advancement of epidemiological surveillance for anthrax in the Rostov region. Epidemiology and Infectious Diseases, Russian Journal. 2016;21(3):152-156. (In Russ.) doi: 10.18821/1560-9529-2016-21-3-152-156
10. Prislegina DA, Maletskaya OV, Dubyanski VM, et. al. Monitoring of the Mosquito Vector of Dangerous Arboviruses Using the ZikaMap Web Portal. Public Health and Life Environment – PH&LE. 2023;31(7):75-82. (In Russ.) doi: 10.35627/2219-5238/2023-31-7-75-82
11. Grad YH, Lipsitch M. Epidemiologic data and pathogen genome sequences: a powerful synergy for public health. Genome Biol. 2014;15(11):538. doi: 10.1186/s13059-014-0538-4
12. Kovtunov AI, Yustratov VB, Nikeshina NN. [Epidemiological characteristics of West Nile fever in the Astrakhan region.] // Arbovirusy i arbovirusnye infektsii. 2007:114-115.
13. Zhukov KV, Udovichenko SK, Nikitin DN, Viktorov DV, Toporkov AV. Application of Geographic Information Systems in epidemiological surveillance for West Nile Fever and other arbovirus infections at the modern stage. Infektsionnye Bolezni: Novosti, Mneniya, Obuchenie. 2021;10(2):16-24. (In Russ) doi: 10.33029/2305-3496-2021-10-2-16-24
14. Nikitin DN, Udovichenko SK, Zhukov KV, Putintseva EV, Viktorov DV, Toporkov AV. Development of an Approach to Integrated Epidemiological Zoning of West Nile Fever Endemic Territory (by the Example of the Volgograd Region). Epidemiology and Vaccinal Prevention. 2022;21(1):47-55. (In Russ.) doi: 10.31631/2073-3046-2022-21-1-47-55
15. Farooq Z, Rocklöv J, Wallin J, Abiri N, Sewe MO, Sjödin H, Semenza JC. Artificial intelligence to predict West Nile virus outbreaks with eco-climatic drivers. Lancet Reg Health Eur. 2022;17:100370. doi: 10.1016/j.lanepe.2022.100370
16. Kosova AA, Chalapa VI, Kovtun OP. Methods for modellind and forecasting dynamics of infectious diseases. Ural Medical Journal. 2023;22(4):102-112. (In Russ.) doi: 10.52420/2071-5943-2023-22-4-102-112
17. Ivanova AV, Safronov VA. Formation of a Credible Methodological Framework for Epidemiological Forecasting of the Incidence of Hemorrhagic Fever with Renal Syndrome Using Machine Learning Techniques. Problems of Particularly Dangerous Infections. 2024;(3):103-110. (In Russ.) doi: 10.21055/0370-1069-2024-3-103-110
18. Platonov AE. The influence of weather conditions on the epidemiology of vector-borne diseases (by the example of West Nile fever in Russia). Annals of the Russian academy of medical sciences. 2006;(2):25-29. (In Russ.)
19. Safronov VA, Smolenskiy VYu, Smelyanskiy VP, Savchenko ST, Razdorskiy AS, Toporkov VP. Assessment of epidemic manifestations of the West Nile fever in the Volgograd region depending on the climatic conditions // Problems of Virology. 2014;59(6):42-46. (In Russ.)
20. Zhukov KV, Nikitin DN, Kovrizhnykh DV, Viktorov DV, Toporkov AV. A conceptual scheme of a predictive-analytical model for describing incidence of West Nile fever based on weather and climate estimation (exemplified by the Volgograd region). Health Risk Analysis. 2022;(4):124–136. doi: 10.21668/health.risk/2022.4.12.eng
Supplementary files
Review
For citations:
Nikitin D.N., Udovichenko S.K., Putintseva E.V., Toporkov A.V. Integration of Information Technology in West Nile Virus Surveillance in the Russian Federation. Public Health and Life Environment – PH&LE. 2025;33(4):69-77. https://doi.org/10.35627/2219-5238/2025-33-4-69-77