Influence of radiofrequency electromagnetic fields on female reproductive health: A review
https://doi.org/10.35627/2219-5238/2024-32-5-53-65
Abstract
Introduction: Effects of radiofrequency electromagnetic fields on the female reproductive system were the focus of comprehensive experimental, clinical, and epidemiologic studies in Russia in the 20th century. Their findings were taken into account when developing health regulations.
Objective: To analyze research data on the harmful impact of radiofrequency electromagnetic fields on the female reproductive system.
Materials and methods: We reviewed domestic and foreign publications found in Scopus, Web of Science, and PubMed bibliographic databases using the following keywords: electromagnetic fields, reproductive system, and female. Of 89 papers originally selected, 56 proved adverse effects of the electromagnetic factor on the female reproductive system and were eligible for inclusion in the review.
Results: Both Russian clinical and epidemiologic studies of women exposed to radiofrequency electromagnetic fields in the occupational setting and experimental animal studies give evidence of negative effects of electromagnetic radiation on the female reproductive system. At present, experimental studies of reproductive effects of radiofrequency electromagnetic fields with complex characteristics of a radio frequency signal in female laboratory animals are mainly presented. Foreign epidemiologic studies mainly focus on effects of mobile phone usage. Requirements for working conditions of pregnant women have been reduced in guidelines and regulations.
Conclusions: Reproductive effects of exposure to radiofrequency electromagnetic fields in women include menstrual disorders, toxicosis during pregnancy, premature birth, and miscarriages. Animal testing also demonstrated their detrimental impact on reproductive health.
About the Authors
V. N. NikitinaRussian Federation
Valentina N. Nikitina, Dr. Sci. (Med.), Senior Researcher, Head of the Department of Electromagnetic Radiation Research
4, 2nd Sovetskaya Street, Saint Petersburg, 191036
N. I. Kalinina
Russian Federation
Nina I. Kalinina, Cand. Sci. (Med.), Senior Researcher, Department of Electromagnetic Radiation Research
4, 2nd Sovetskaya Street, Saint Petersburg, 191036
E. N. Dubrovskaya
Russian Federation
Ekaterina N. Dubrovskaya, Researcher, Department of Electromagnetic Radiation Research
4, 2nd Sovetskaya Street, Saint Petersburg, 191036
V. P. Plekhanov
Russian Federation
Vladimir P. Plekhanov, Researcher, Department of Electromagnetic Radiation Research
4, 2nd Sovetskaya Street, Saint Petersburg, 191036
References
1. Jalilian H, Eeftens M, Ziaei M, Röösli M. Public exposure to radiofrequency electromagnetic fields in everyday microenvironments: An updated systematic review for Europe. Environ Res. 2019;176:108517. doi: 10.1016/j.envres.2019.05.048
2. McCredden JE, Cook N, Weller S, Leach V. Wireless technology is an environmental stressor requiring new understanding and approaches in health care. Front Public Health. 2022;10:986315. doi: 10.3389/fpubh.2022.986315
3. Koppel T, Ahonen M, Carlberg M, Hardell L. Very high radiofrequency radiation at Skeppsbron in Stockholm, Sweden from mobile phone base station antennas positioned close to pedestrians’ heads. Environ Res. 2022;208:112627. doi: 10.1016/j.envres.2021.112627
4. Koppel T, Hardell L. Measurements of radiofrequency electromagnetic fields, including 5G, in the city of Columbia, SC, USA. World Acad Sci J. 2022;4(3):22. doi: 10.3892/wasj.2022.157
5. Izmestieva OS, Pavlova LN, Zhavoronkov LP. Experimental evaluation of the consequences of the chronic influence of electromagnetic radiation of the mobile communication range in antenatal rat development period. Radiatsionnaya Biologiya. Radioekologiya. 2020;60(1):63-70. (In Russ.) doi: 10.31857/S0869803120010099
6. Panfilova VV, Kolganova OI, Chibisova OF. Effect of chronic electromagnetic radiation on embryogenesis and early postnatal development of the offspring of irradiated animals. Radiatsiya i Risk. Byulleten’ Natsional’nogo Radiatsionno-Epidemiologicheskogo Registra. 2021;30(4):61-68. (In Russ.) doi: 10.21870/0131-3878-2021-30-4-61-68
7. Babanov SA, Strizhakov LA, Agarkova IA, Tezikov YuV, Lipatov IS. Workplace factors and reproductive health: Causation and occupational risk assessment. Ginekologiya. 2019;21(4):33-43. (In Russ.) doi: 10.26442/20795696.2019.1.190227
8. Navumau AD. Effect of electromagnetic radiation on reproductive functions. Okhrana Materinstva i Detstva. 2019;(2(34)):58-61. (In Russ.)
9. Ouellet-Hellstrom R, Stewart WF. Miscarriages among female physical therapists who report using radio- and microwave-frequency electromagnetic radiation. Am J Epidemiol. 1993;138(10):775–786. doi: 10.1093/oxfordjournals.aje.a116781
10. Gubéran E, Campana A, Faval P, et al. Gender ratio of offspring and exposure to shortwave radiation among female physiotherapists. Scand J Work Environ Health. 1994;20(5):345-348. doi: 10.5271/sjweh.1387
11. Taskinen H, Kyyrönen P, Hemminki K. Effects of ultrasound, shortwaves, and physical exertion on pregnancy outcome in physiotherapists. J Epidemiol Community Health. 1990;44(3):196-201. doi: 10.1136/jech.44.3.196
12. Boileau N, Margueritte F, Gauthier T, et al. Mobile phone use during pregnancy: Which association with fetal growth? J Gynecol Obstet Hum Reprod. 2020;49(8):101852. doi: 10.1016/j.jogoh.2020.101852
13. Tsarna E, Reedijk M, Birks LE, et al. Associations of maternal cell-phone use during pregnancy with pregnancy duration and fetal growth in 4 birth cohorts. Am J Epidemiol. 2019;188(7):1270-1280. doi: 10.1093/aje/kwz092
14. Abad M, Malekafzali H, Simbar M, Seyed Mosaavi H, Merghati Khoei E. Association between electromagnetic field exposure and abortion in pregnant women living in Tehran. Int J Reprod Biomed. 2016;14(5):347-354.
15. Choi KH, Ha M, Ha EH, et al. Neurodevelopment for the first three years following prenatal mobile phone use, radio frequency radiation and lead exposure. Environ Res. 2017;156:810-817. doi: 10.1016/j.envres.2017.04.029
16. Lu X, Oda M, Ohba T, Mitsubuchi H, Masuda S, Katoh T. Association of excessive mobile phone use during pregnancy with birth weight: An adjunct study in Kumamoto of Japan Environment and Children’s Study. Environ Health Prev Med. 2017;22(1):52. doi: 10.1186/s12199-017-0656-1
17. Baste V, Oftedal G, Møllerløkken OJ, Mild KH, Moen BE. Prospective study of pregnancy outcomes after parental cell phone exposure: The Norwegian Mother and Child Cohort Study. Epidemiology. 2015;26(4):613-621. doi: 10.1097/EDE.0000000000000293
18. Irani M, Aradmehr M, Ghorbani M, Baghani R. Electromagnetic field exposure and abortion in pregnant women: A systematic review and meta-analysis. Malays J Med Sci. 2023;30(5):70-80. doi: 10.21315/mjms2023.30.5.6
19. Gautam R, Pardhiya S, Nirala JP, Sarsaiya P, Rajamani P. Effects of 4G mobile phone radiation exposure on reproductive, hepatic, renal, and hematological parameters of male Wistar rat. Environ Sci Pollut Res Int. 2024;31(3):4384-4399. doi: 10.1007/s11356-023-31367-x
20. Demirbağ B, Aktaş S, Çömelekoğlu Ü, Kara İ, Yildirim M, Yildirim DD. Protective effect of paricalcitol in rat testicular damage induced by subchronic 1800 MHz radiofrequency radiation. Biochem Biophys Res Commun. 2023;680:42-50. doi: 10.1016/j.bbrc.2023.09.024
21. Özgen M, Take G, Kaplanoğlu İ, Erdoğan D, Seymen CM. Therapeutic effects of melatonin in long-term exposure to 2100MHz radiofrequency radiation on rat sperm characteristics. Rev Int Androl. 2023;21(4):100371. doi: 10.1016/j.androl.2023.100371
22. Chu KY, Khodamoradi K, Blachman-Braun R, et al. Effect of radiofrequency electromagnetic radiation emitted by modern cellphones on sperm motility and viability: An in vitro study. Eur Urol Focus. 2023;9(1):69-74. doi: 10.1016/j.euf.2022.11.004
23. Yan S, Ju Y, Dong J, et al. Paternal radiofrequency electromagnetic radiation exposure causes sex-specific differences in body weight trajectory and glucose metabolism in offspring mice. Front Public Health. 2022;10:872198. doi: 10.3389/fpubh.2022.872198
24. Dong VNK, Tantisuwat L, Setthawong P, Tharasanit T, Sutayatram S, Kijtawornrat A. The preliminary chronic effects of electromagnetic radiation from mobile phones on heart rate variability, cardiac function, blood profiles, and semen quality in healthy dogs. Vet Sci. 2022;9(5):201. doi: 10.3390/vetsci9050201
25. Gur FM, Ikinci Keles A, Erol HS, et al. The effect of 900- MHz radiofrequency electromagnetic fields during the adolescence on the histological structure of rat testis and its androgen and estrogen receptors localization. Int J Radiat Res. 2021;19(1):135-144. doi: 10.29252/ijrr.19.1.135
26. Hasan I, Amin T, Alam MR, Islam MR. Hematobiochemical and histopathological alterations of kidney and testis due to exposure of 4G cell phone radiation in mice. Saudi J Biol Sci. 2021;28(5):2933-2942. doi: 10.1016/j.sjbs.2021.02.028
27. Alkis ME, Akdag MZ, Dasdag S, Yegin K, Akpolat V. Single-strand DNA breaks and oxidative changes in rat testes exposed to radiofrequency radiation emitted from cellular phones. Biotechnol Biotechnol Equip. 2019;33(1):1733- 1740. doi: 10.1080/13102818.2019.1696702
28. Houston BJ, Nixon B, McEwan KE, et al. Whole-body exposures to radiofrequency-electromagnetic energy can cause DNA damage in mouse spermatozoa via an oxidative mechanism. Sci Rep. 2019;9(1):17478. doi: 10.1038/s41598-019-53983-9
29. Gautam R, Singh KV, Nirala J, Murmu NN, Meena R, Rajamani P. Oxidative stress-mediated alterations on sperm parameters in male Wistar rats exposed to 3G mobile phone radiation. Andrologia. 2019;51(3):e13201. doi: 10.1111/and.13201
30. Fatehi D, Anjomshoa M, Mohammadi M, Seify M, Rostamzadeh A. Biological effects of cell-phone radiofrequency waves exposure on fertilization in mice; an in vivo and in vitro study. Middle East Fertil Soc J. 2018;23(2):148-153. doi: 10.1016/j.mefs.2017.10.002
31. Hanci H, Kerimoğlu G, Mercantepe T, Odaci E. Changes in testicular morphology and oxidative stress biomarkers in 60-day-old Sprague Dawley rats following exposure to continuous 900-MHz electromagnetic field for 1h a day throughout adolescence. Reprod Toxicol. 2018;81:71-78. doi: 10.1016/j.reprotox.2018.07.002
32. Oh JJ, Byun SS, Lee SE, Choe G, Hong SK. Effect of electromagnetic waves from mobile phones on spermatogenesis in the era of 4G-LTE. Biomed Res Int. 2018;2018:1801798. doi: 10.1155/2018/1801798
33. Jamaludin N, Razak SSA, Jaffar FHF, Osman K, Ibrahim SF. The effect of smartphone’s radiation frequency and exposure duration on NADPH oxidase 5 (NOX5) level in sperm parameters. Sains Malays. 2017;46(9):1597- 1602. doi: 10.17576/jsm-2017-4609-31
34. Parsanezhad ME, Mortazavi SMJ, Doohandeh T, et al. Exposure to radiofrequency radiation emitted from mobile phone jammers adversely affects the quality of human sperm. Int J Radiat Res. 2017;15(1):63-70. doi: 10.18869/acadpub.ijrr.15.1.63
35. Kamali K, Atarod M, Sarhadi S, et al. Effects of electromagnetic waves emitted from 3G+wi-fi modems on human semen analysis. Urologia. 2017;84(4):209-214. doi: 10.5301/uj.5000269
36. Bakacak M, Bostanci MS, Attar R, et al. The effects of electromagnetic fields on the number of ovarian primordial follicles: An experimental study. Kaohsiung J Med Sci. 2015;31(6):287-292. doi: 10.1016/j.kjms.2015.03.004
37. Okatan DÖ, Kaya H, Aliyazicioğlu Y, Demir S, Çolakoğlu S, Odaci E. Continuous 900-megahertz electromagnetic field applied in middleand late-adolescence causes qualitative and quantitative changes in the ovarian morphology, tissue and blood biochemistry of the rat. Int J Radiat Biol. 2018;94(2):186-198. doi: 10.1080/09553002.2018.1420924
38. Yuvaci HU, Uysal S, Haltaş H, et al. The effect of non-ionizing radiation on the ovarian reserves of female rats. Clin Exp Obstet Gynecol. 2017;44(4):605-610. doi: 10.12891/ceog3594.2017
39. Calis P, Seymen M, Soykan Y, et al. Does exposure of smart phones during pregnancy affect the offspring’s ovarian reserve? A rat model study. Fetal Pediatr Pathol. 2021;40(2):142-152. doi: 10.1080/15513815.2019.1692112
40. Shahin S, Singh SP, Chaturvedi CM. Mobile phone (1800MHz) radiation impairs female reproduction in mice, Mus musculus, through stress induced inhibition of ovarian and uterine activity. Reprod Toxicol. 2017;73:41- 60. doi: 10.1016/j.reprotox.2017.08.001
41. Suzuki S, Okutsu M, Suganuma R, et al. Influence of radiofrequency-electromagnetic waves from 3rd-generation cellular phones on fertilization and embryo development in mice. Bioelectromagnetics. 2017;38(6):466-473. doi: 10.1002/bem.22063
42. Türedi S, Hanci H, Çolakoğlu S, Kaya H, Odaci E. Disruption of the ovarian follicle reservoir of prepubertal rats following prenatal exposure to a continuous 900-MHz electromagnetic field. Int J Radiat Biol. 2016;92(6):329- 337. doi: 10.3109/09553002.2016.1152415
Review
For citations:
Nikitina V.N., Kalinina N.I., Dubrovskaya E.N., Plekhanov V.P. Influence of radiofrequency electromagnetic fields on female reproductive health: A review. Public Health and Life Environment – PH&LE. 2024;32(5):53-65. (In Russ.) https://doi.org/10.35627/2219-5238/2024-32-5-53-65