Preview

Public Health and Life Environment – PH&LE

Advanced search

Clinical aspects of somatic comorbidities in gas and electric welders

https://doi.org/10.35627/2219-5238/2024-32-1-77-83

Abstract

Introduction: Health effects of welding fumes in workers are not limited to fibrosis and irritation of the respiratory tract. Inhalation of a complex mixture of particles and gases from the workplace air can cause damage to the central nervous system and higher incidence of nonoccupational diseases attributed to toxic, allergic, and carcinogenic effects of this risk factor.

Objective: To study characteristics of somatic comorbidities in welders with occupational diseases of the respiratory system.

Materials and methods: The study involved 140 male patients aged 48 to 60 years suffering from occupational respiratory diseases. The main (first) group included gas and electric welders while the reference group consisted of miners and millers with silica-related lung diseases. The mean occupational exposure to industrial aerosols in the groups was 22.8 ± 6.7 and 22.3 ± 6.9 years, respectively. We conducted a questionnaire-based survey and clinical laboratory testing of the workers. The intergroup differences were considered statistically significant at p < 0.05.

Results: We established that lesions of the mucous membrane of the esophagus, stomach and duodenum were the most prevalent comorbidities in the electric welders (72.7 %), followed by dyslipidemia (47.3 %), stage I hypertension (36.4 %), liver diseases (31.8 %), kidney damage (31.1 %), stage II and III hypertension (27.8 %). Coronary heart disease and diabetes mellitus were much less frequent and observed in only 4.5 % of the welders. Mucosal lesion of the upper gastrointestinal tract and liver diseases were more prevalent in the welders compared to the reference group. Study limitations: Statistical analysis was carried out using a nonparametric test to compare two independent samples.

Conclusions: Exposure to welding fumes inducing occupational respiratory diseases increases the frequency of a combination of such nonoccupational diseases as lesions of the mucous membrane of the upper gastrointestinal tract and liver damage.

About the Authors

Irina V. Yatsyna
F.F. Erisman Federal Scientific Center of Hygiene
Russian Federation

Irina V. Yatsyna, Dr. Sci. (Med.), Professor, Deputy Director for Science,

2, Semashko Street, Mytishchi, Moscow Region, 141014.



Maria V. Sheenkova
F.F. Erisman Federal Scientific Center of Hygiene
Russian Federation

Maria V. Sheenkova, Cand. Sci. (Med.), Head of the Therapeutic Department, Institute of General and Occupational Pathology named after Academician A.I. Potapov,

2, Semashko Street, Mytishchi, Moscow Region, 141014.



Natalia M. Savicheva
Academy of Postgraduate Education of the Federal State Budgetary Institution «Federal Scientific and Clinical Center of Specialized types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency»
Russian Federation

Natalia M. Savicheva, Cand. Sci. (Med.), Assoc. Prof., Head of the Department of Specialized Hygienic Disciplines and Industrial Healthcare,

91, Volokolamskoe Avenue, Moscow, 125371.



References

1. Kazitskaya AS, Mikhailova NN, Zhukova AG, Gorokhova LG. Immune mechanisms underlying occupational bronchopulmonary diseases due to dust. Meditsina Truda i Promyshlennaya Ekologiya. 2018;(6):33-38. (In Russ.) doi: 10.31089/1026-9428-2018-6-33-38

2. Riccelli MG, Goldoni M, Poli D, Mazzoni P, Cavallo D, Corradi M. Welding fumes, a risk factor for lung diseases. Int J Environ Res Public Health. 2020;17(7):2552. doi: 10.3390/ijerph17072552

3. Valeeva ET, Galimova RR, Stepanov EG. Assessment of a priori health risk for workers in the main occupational groups in engineering industry. Meditsina Truda i Ekologiya Cheloveka. 2021;(3(27)):96-108. (In Russ.) doi: 10.24412/2411-3794-2021-10307

4. Koskela K, Oksa P, Sauni R, et al. Pulmonary inflammation in foundry workers. J Occup Environ Med. 2015;57(2):124-128. doi: 10.1097/JOM.0000000000000390

5. Volgareva AD, Abdrakhmanova ER, Chudnovets GM. Prevalence of occupational respiratory diseases from exposure to industrial aerosols. Meditsina Truda i Promyshlennaya Ekologiya. 2019;59(9):591-592. (In Russ.) doi: 10.31089/1026-9428-2019-59-9-591-592

6. Golovko VV, Sakhno AI. Main directions for improving public health legislation in Russia. Pravoprimenenie. 2023;7(2):96-104. (In Russ.) doi: 10.52468/2542-1514.2023.7(2).96-104

7. Batchaeva ZA. Negative impact of industrial dust on human health. International Journal of Humanities and Natural Sciences. 2023;4-3(79):10-12. (In Russ.) doi: 10.24412/2500-1000-2023-4-3-10-12

8. l’inykh MV. The pathology of gastroduodenal zone under diseases of dust etiology. Zdravookhranenie Rossiyskoy Federatsii. 2013;(5):47-49. (In Russ.)

9. Sheenkova MV, Rushkevich OP, Yatsyna IV. Features of metabolic pathology of the liver under the influence of industrial aerosols. Gigiena i Sanitariya. 2021;100(9):943-946. (In Russ.) doi: 10.47470/0016-9900-2021-100-9-943-946

10. Budash DS, Babanov SA. Humoral immunity factors in case of pulmonary dust diseases and their prognostic value. Terapevt. 2017;(3):10-15. (In Russ.)

11. Staseva EV, Demchenko SG, Oniskovets YuM. Peculiarities of labor conditions and safety of the electric welder of manual welding. Bezopasnost’ Tekhnogennykh i Prirodnykh Sistem. 2020;(3):16-20. (In Russ.) doi: 10.23947/2541-9129-2020-3-16-20

12. Markova OL, Kir’yanova MN, Plekhanov VP, Ivanova EV. Health risk factors among electric and gas welders using different types of welding. Meditsina Truda i Promyshlennaya Ekologiya. 2020;60(8):502-510. (In Russ.) doi: 10.31089/1026-9428-2020-60-8-502-510

13. Pereverzev IG, Morozkin IS. [On the approach to assessing occupational risks at the workplace of a welder at the enterprises of the machine-building complex.] Inzhenernyy Vestnik Dona. 2021;(11):568-575. (In Russ.) Accessed January 29, 2024. http://ivdon.ru/ru/magazine/archive/n1y2021/7306

14. Kuznecov DA, Smolina AS, Rakov UV, Ignatov MN. Prediction of the principles solid constituents of welding fumes by type electrode coatings. Vestnik Permskogo Natsional’nogo Issledovatel’skogo Politekhnicheskogo Universiteta. Mashinostroenie, Materialovedenie. 2014;16(2):21-34. (In Russ.)

15. Kirichenko KYu, Kosyanov DYu, Drozd VA, et al. The comparative analysis of particulate aerosol welding electrodes during welding with different types of coating. Vestnik Inzhenernoy Shkoly Dal’nevostochnogo Federal’nogo Universiteta. 2017;(3(32)):111-126. (In Russ.) doi: 10.5281/zenodo.897017

16. Kirichenko KYu, Rogulin RS, Drozd VA, et al. Evaluation of the distribution of the welding aerosol particles in the welder’s work area as a function of time. Ekologiya Urbanizirovannykh Territoriy. 2018;(2):42-51. (In Russ.) doi: 10.24411/1816-1863-2018-12042

17. Elifanov AV, Kovyazina OL, Lepunova ON, Shalabodov AD. The impact of working conditions on indicators of cardiorespiratory system and blood in electric welders with different lengh of work. Ekologiya Cheloveka (Human Ecology). 2018;(3):27-32. (In Russ.) doi: 10.33396/1728-0869-2018-3-27-32

18. Petryaeva YuS, Ermolaeva SV. In-plant welding production atmosphere: Ulyanovsk automobile plant case-study. Ul’yanovskiy Mediko-Biologicheskiy Zhurnal. 2020;(2):134-144. (In Russ.) doi: 10.34014/2227-1848-2020-2-134-144

19. Khlybova YuO. [Analysis of working conditions at the workplace of an electric and gas welder on the example of a gas distribution organization.] Innovatsionnaya Nauka. 2020;(4):65-68. (In Russ.)

20. Chashchin MV, Ellingsen DG, Chashchin VP, et al. Exposure assessment of airborne manganese and iron in welders. Zdorov’e Naseleniya i Sreda Obitaniya. 2014;(10(259)):28-31. (In Russ.)

21. Chashchin MV, Kaik EA, Klimova EG. Features of differential diagnosis of occupational diseases in welders. Meditsina Truda i Promyshlennaya Ekologiya. 2019;59(9):800-801. (In Russ.) doi: 10.31089/1026-9428-2019-59-9-800-801

22. Syurin SA. Features of respiratory diseases development at separateand combined exposure to welding aerosol and tobacco smoke. Gigiena i Sanitariya. 2021;100(8):818-825. (In Russ.) doi: 10.47470/0016-9900-2021-100-8-818-825

23. Järvelä M, Kauppi P, Tuomi T, et al. Inflammatory response to acute exposure to welding fumes during the working day. Int J Occup Med Environ Health. 2013;26(2):220-229. doi: 10.2478/s13382-013-0097-z

24. Bourmistrova TB, Komarova TA. Peculiarities of pulmonary X-ray changes due to exposure to welding aerosol. Meditsina Truda i Promyshlennaya Ekologiya. 2009;(9):14-19. (In Russ.)

25. Oganov RG, Simanenkov VI, Bakulin IG, et al. Comorbidities in clinical practice. Algorithms for diagnostics and treatment. Kardiovaskulyarnaya Terapiya i Profilaktika. 2019;18(1):5-66. (In Russ.) doi: 10.15829/1728-8800-2019-1-5-66

26. Lazebnik LB, Konev YuV. Historical features and semantic difficulties of using the terms denoting multiplicity of diseases in one patient. Eksperimental’naya i Klinicheskaya Gastroenterologiya. 2018;(6(154)):4-9. (In Russ.)

27. Polyakova EM, Syurin SA. Occupational health risks from combined exposure to welding fumes and cold environment for welders. Zdorov’e Naseleniya i Sreda Obitaniya. 2021;29(9):69-77. (In Russ.) doi: 10.35627/2219-5238/2021-29-9-69-77

28. Sheenkova MV. Pathology of the upper gastrointestinal tract when exposed to non-ferrous metal aerosols. Meditsina Truda i Promyshlennaya Ekologiya. 2019;59(9):809-810. (In Russ.) doi: 10.31089/1026-9428-2019-59-9-809-810

29. Sokolova LA, Popova ON, Kalinina MM, Bogdanov MY, Kocheshova GF, Gudkov AB. Prediction of occupational diseases risk among assemblers of vessel metal hulls of machine building plant. Ekologiya Cheloveka (Human Ecology). 2015;22(1):10-14. (In Russ.) doi: 10.17816/humeco17165

30. Gorblyansky YuY, Pictushanskaya TE, Panova MA, Kontorovich EP, Ponamareva OP. Burden of occupational lung disease. Meditsina Truda i Promyshlennaya Ekologiya. 2021;61(4):243–252. (In Russ.) doi: 10.31089/1026-9428-2021-61-4-243-252

31. Mazitova NN, Berkheyeva ZM, Shakirova LV. The use of the systemic method in diagnostics of occupational respiratory diseases. Obshchestvennoe Zdorov’e i Zdravookhranenie. 2009;(1(21)):25-30. (In Russ.)

32. Liubtchenko PN, Atamantchuk AA, Polyakova EA, Shirokova EB, Dmitruk LI, Yanshina EN. Structure and dynamics of occupational lung diseases in workers of Moscow region on long-standing 50-year observation. Meditsina Truda i Promyshlennaya Ekologiya. 2014;(2):5-10. (In Russ.)

33.


Supplementary files

Review

For citations:


Yatsyna I.V., Sheenkova M.V., Savicheva N.M. Clinical aspects of somatic comorbidities in gas and electric welders. Public Health and Life Environment – PH&LE. 2024;32(1):77-83. (In Russ.) https://doi.org/10.35627/2219-5238/2024-32-1-77-83

Views: 205


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-5238 (Print)
ISSN 2619-0788 (Online)