Preview

Public Health and Life Environment – PH&LE

Advanced search

Prevention of the Combined Cytotoxic Effect of Selenium and Copper Oxide Nanoparticles in the Animal Experiment

https://doi.org/10.35627/2219-5238/2022-30-9-43-48

Abstract

Background: Copper ore processing plants are the emission sources of aerosols having a complex chemical composition. The aerosol components polluting both the workplace air and the ambient air of the adjacent populated areas include selenium, copper, and nanoparticles of these metal oxides.
Objective: To evaluate the combined cytotoxic effect of selenium and copper oxide nanoparticles following the administration of a bioprophylactic complex.
Materials and methods: The exposure to cytotoxic chemicals was modeled on outbred female rats by a single intratracheal injection of a suspension of selenium and copper oxide nanoparticles at a concentration of 0.25 g/L, obtained by laser ablation. Cytological and biochemical parameters of the bronchoalveolar lavage fluid (BALF) were measured 24 hours after the exposure. A specially developed bioprophylactic complex was administered to a part of the experimental animals with feed and drink during a month prior to the injection.
Results: A single intratracheal instillation of the suspension of SeO and CuO nanoparticles altered BALF cytological and biochemical parameters, thus indicating their pronounced cytotoxic effect. In the group of the exposed rats administered a preliminary course of biological prophylaxis, we observed a decrease in the absolute number of neutrophils and the neutrophil to alveolar macrophage ratio, which is an indirect indicator of the cytotoxic effect, and the activity of aspartate aminotransferase in the bronchoalveolar lavage fluid.
Conclusion: The science-based and experimentally tested complex of bioprotectors can attenuate a combined cytotoxic health effect of the exposure to selenium and copper oxide nanoparticles.

About the Authors

L. I. Privalova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Larisa I. Privalova, Prof., Dr. Sci. (Med.), Head of the Laboratory of Scientific Foundations of Biological Prevention

30 Popov Street, Yekaterinburg, 620014



Yu. V. Ryabova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Yuliya V. Ryabova, Junior Researcher, Department of Toxicology and Biological Prevention

30 Popov Street, Yekaterinburg, 620014



M. P. Sutunkova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Marina P. Sutunkova, Dr. Sci. (Med.), Director

30 Popov Street, Yekaterinburg, 620014



V. B. Gurvich
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Vladimir B. Gurvich, Dr. Sci. (Med.), Scientific Director

30 Popov Street, Yekaterinburg, 620014



I. A. Minigalieva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Ilzira A. Minigalieva, Dr. Sci. (Med.), Head of the Department of Toxicology and Biological Prevention

30 Popov Street, Yekaterinburg, 620014



T. V. Bushueva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Tatiana V. Bushueva, Cand. Sci. (Med.), Head of the Research and Production Association of Laboratory and Diagnostic Technologies

30 Popov Street, Yekaterinburg, 620014



A. V. Tazhigulova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Anastasia V. Tazhigulova, Junior Researcher, Department of Toxicology and Biological Prevention

30 Popov Street, Yekaterinburg, 620014



S. N. Solovyеva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Svetlana N. Solovyеva, Cand. Sci. (Biol.), Head of the Clinic for Laboratory Animals

30 Popov Street, Yekaterinburg, 620014



B. A. Katsnelson
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Russian Federation

Boris A. Katsnelson, Prof., Dr. Sci. (Med.), Scientific Advisor

30 Popov Street, Yekaterinburg, 620014



References

1. Cho WS, Duffin R, Poland CA, et al. Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology. 2012;6(1):22-35. doi: 10.3109/17435390.2011.552810

2. Cronholm P, Karlsson HL, Hedberg J, et al. Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. Small. 2013;9(7):970-982. doi: 10.1002/smll.201201069

3. Sutunkova MP. Experimental studies of toxic effects’ of metallic nanoparticles at iron and nonferrous industries and risk assessment for workers’ health. Gigiena i Sanitariya. 2017;96(12):1182-1187. (In Russ.) doi: 10.47470/0016-9900-2017-96-12-1182-1187

4. Privalova LI, Sutunkova MP, Minigalieva IA, et al. Main results obtained in a series of animal experiments for the assessment of the organism's responses to metallic nanoparticles exposure. IOP Conf Ser: Mater Sci Eng. 2018;443:012025. Accessed July 13, 2022. https://iopscience.iop.org/article/10.1088/1757-899X/443/1/012025/meta

5. Minigalieva IA, Katsnelson BA, Panov VG, et al. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicology. 2017;380:72-93. doi: 10.1016/j.tox.2017.02.007

6. Kul’chitskii NA, Naumov AV. Modern state of markets of selenium and selenium-based compounds. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 2015;(3):40-48. (In Russ.) doi: 10.17073/0021-3438-2015-3-40-48

7. Zagorodnyaya AN. Slime of sulfuric acid workshop’s of Balkhash Copper Plant – alternative source of production of selenium at organization. Review. Kompleksnoe Ispol'zovanie Mineral'nogo Syr'ya. 2018;(4(307)):46-55 (In Russ.) doi: 10.31643/2018/6445.29

8. Privalova LI, Katsnelson BA, Loginova NV, et al. Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors. Int J Mol Sci. 2014;15(7):12379–12406. doi: 10.3390/ijms150712379

9. Privalova LI, Katsnelson BA, Varaksin AN, Panov VG, Balesin SL. The pulmonary phagocytosis response to separate and combined impacts of manganese (IV) and chromium (VI) containing particulates. Toxicology. 2016;370:78-85. doi:10.1016/j.tox.2016.09.016

10. Yücel UM, Başbuğan Y, Uyar A, Kömüroğlu AU, Keleş ÖF. Use of an antiarrhythmic drug against acute selenium toxicity. J Trace Elem Med Biol. 2020;59:126471. doi: 10.1016/j.jtemb.2020.126471

11. Gad MA, Abd El-Twab SM. Selenium toxicosis assessment (in vivo and in vitro) and the protective role of vitamin B12 in male quail (Coturnix Coturnix). Environ Toxicol Pharmacol. 2009;27(1):7-16. doi: 10.1016/j.etap.2008.07.001

12. Koekkoek WA, van Zanten AR. Antioxidant vitamins and trace elements in critical illness. Nutr Clin Pract. 2016;31(4):457-474. doi: 10.1177/0884533616653832

13. Pereira TC, Campos MM, Bogo MR. Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model. J Appl Toxicol. 2016;36(7):876-885. doi: 10.1002/jat.3303

14. Fahmy B, Cormier SA. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro. 2009;23(7):1365-1371. doi: 10.1016/j.tiv.2009.08.005

15. Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol. 2013;75(3):645-662. doi: 10.1111/j.1365-2125.2012.04374.x

16. Mousa A, Misso M, Teede H, Scragg R, de Courten B. Effect of vitamin D supplementation on inflammation: protocol for a systematic review. BMJ Open. 2016;6(4):e010804. doi: 10.1136/bmjopen-2015-010804

17. Tarakhovsky YuS, Kim YuA, Abdrasilov BS, Muzapharov EN. [Flavonoids: Biochemistry, Biophysics, Medicine.] Pushchino: Synchrobook; 2013. (In Russ.) Accessed July 13, 2022. http://biophenols.ru/wp/wp-content/uploads/2013/11/Tarahovsky.pdf

18. Li X, Jin Q, Yao Q, et al. The flavonoid quercetin ameliorates liver inflammation and fibrosis by regulating hepatic macrophages activation and polarization in mice. Front Pharmacol. 2018;9:72. doi: 10.3389/fphar.2018.00072

19. Carr AC, Maggini S. Vitamin C and immune function. Nutrients. 2017;9(11):1211. doi: 10.3390/nu9111211

20. Spoelstra-de Man AME, Elbers PWG, Oudemans-Van Straaten HM. Vitamin C: should we supplement? Curr Opin Crit Care. 2018;24(4):248-255. doi: 10.1097/MCC.0000000000000510


Review

For citations:


Privalova L.I., Ryabova Yu.V., Sutunkova M.P., Gurvich V.B., Minigalieva I.A., Bushueva T.V., Tazhigulova A.V., Solovyеva S.N., Katsnelson B.A. Prevention of the Combined Cytotoxic Effect of Selenium and Copper Oxide Nanoparticles in the Animal Experiment. Public Health and Life Environment – PH&LE. 2022;(9):43-48. (In Russ.) https://doi.org/10.35627/2219-5238/2022-30-9-43-48

Views: 366


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-5238 (Print)
ISSN 2619-0788 (Online)