Preview

Public Health and Life Environment – PH&LE

Advanced search

Effect of measles vaccine on maturation of human dendritic cells in vitro

https://doi.org/10.35627/2219-5238/2019-317-8-61-66

Abstract

The most important means of measles control is live measles vaccine, the high epidemiological effectiveness of which is confirmed by half a century of its use. There is a question of the need to further improve the effectiveness of vaccine prophylaxis, in particular, by increasing the immunogenicity of the used vaccine given the increase in the morbidity of measles in recent years. Investigation of effect features of existing vaccine variants is necessary to identify possible ways to increase their immunogenicity. We investigated the effect of measles culture live vaccine on the maturation of human dendritic cells - the most specialized antigen-presenting cells involved in the induction of an immune response. In vitro incubation of monocytic derived immature dendritic cells with the vaccine initiates the process of their partial maturation, which is manifested in an increase in the number of cells carrying molecules CD86, CD83 and ICOSL (CD275).At the same time they have a reduced expression level of the HLA-Dr molecule and chemokine receptors CCR7 and CXCR5 involved in the migration of dendritic cells to peripheral lymphoid organs. In our opinion, the relative weak side of measles vaccine effect on dendritic cell maturation is a factor limiting the immunogenicity of the vaccine, which must be taken into account when developing new measles vaccines.

About the Authors

V. Yu. Talaev
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Russian Federation


O. N. Babaikina
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Russian Federation


M. V. Talaeva
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Russian Federation


E. V. Voronina
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Russian Federation


I. E. Zaichenko
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology
Russian Federation


References

1. О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2018 году: Государственный доклад [Электронный ресурс]. Режим доступа: https://rospotrebnadzor.ru/documents/details. php?ELEMENT_ID=12053. (дата обращения: 06.06.2019).

2. Топтыгина А.П., Смердова М.А., Наумова М.А., Владимирова Н.П., Мамаева Т.А. Влияние особенностей популяционного иммунитета на структуру заболеваемости корью и краснухой // Инфекция и иммунитет. 2018. Т. 8. № 3. С. 341-348.

3. Шамсутдинова О.А. Живые аттенуированные вакцины для иммунопрофилактики // Инфекция и иммунитет. 2017. Т. 7. № 2. С. 107-116.

4. Alvarez D., Vollmann E.H., von Andrian U.H. Mechanisms and Consequences of Dendritic Cell Migration. Immunity, 2008, vol. 29, no. 3, pp. 325-342.

5. Choi Y.S., Kageyama R., Eto D., Escobar T.C., Johnston RJ., Monticelli L., et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity, 2011, vol. 34, pp. 932-946.

6. Duhen T., Herschke F., Azocar O., Druelle J., Plumet S., Delprat C., et al. Cellular receptors, differentiation and endocytosis requirements are key factors for type I IFN response by human epithelial, conventional and plasmacytoid dendritic infected cells by measles virus. Virus Res., 2010, vol. 152, no. 1-2, pp. 115-125.

7. Grosjean I., Caux C., Bella C., Berger I., Wild F., Banchereau J., Kaiserlian D. Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. J. Exp. Med., 1997, vol. 186, no. 6, pp. 801-812.

8. Hickman C.J., Hyde T.B., Sowers S.B., Mercader S., McGrew M., Williams N.J., Beeler J.A., Audet S., Kiehl B., Nandy R., Tamin A., Bellini W.J. Laboratory characterization of measles virus infection in previously vaccinated and unvaccinated individuals. J. Infect. Dis., 2011, vol. 204, Suppl. 1, pp. 549-558.

9. Klagge I.M., Abt M., Fries B., Schneider-Schaulies S. Impact of measles virus dendritic-cell infection on Th-cell polarization in vitro. J. Gen. Virol., 2004, vol. 85, pp. 3239-3247.

10. Linterman M., Rigby R., Wong R. et al. Roquin differentiates the specialized functions of duplicated T cell costimulatory receptor genes CD28 and ICOS. Immunity, 2009, vol. 30, pp. 228-241.

11. Measles vaccines: WHO position paper (PDF). Weekly epidemiological record, 2009, vol. 84, no. 35, pp. 349-60.

12. Merad M., Sathe P., Helft J., Miller J., Mortha A. The Dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol., 2013, vol. 31, pp. 563-604.

13. Minor P.D. Live attenuated vaccines: historical successes and current challenges. Virology, 2015, vol. 479-480, pp. 379-392.

14. Ohgimoto K., Ohgimoto S., Ihara T., Mizuta H., Ishido S., Ayata M., Ogura H., Hotta H. Difference in production of infectious wild-type measles and vaccine viruses in monocyte-derived dendritic cells. Virus Res., 2007, vol. 123, no. 1, pp. 1-8.

15. Orenstein W.A., Strebel P.M., Papania M., Sutter R.W., Bellini W.J., Cochi S.L. Measles eradication: is it in our future? Am. L. Public Health, 2000, vol. 90, pp. 1521-1525.

16. Palucka K., Banchereau J., Mellman I. Designing vaccines based on biology of human dendritic cell subsets. Immunity, 2010, vol. 33, no. 4, pp. 464-478.

17. Rennick L.J., de Vries R.D., Carsillo T.J., Lemon K., van Amerongen G., Ludlow M., et al. Live-attenuated measles virus vaccine targets dendritic cells and macrophages in muscle of nonhuman primates. J. Virol., 2015, vol. 89, no. 4, pp. 2192-2200.

18. Schnorr J.J., Xanthakos S., Keikavoussi P., Kmpgen E., ter Meulen V., Schneider-Schaulies S. Induction of maturation of human blood dendritic cell precursors by measles virus is associated with immunosuppression. Proc. Natl. Acad. Sci. U S A, 1997, vol. 94, no. 10, pp. 5326-5331.

19. Shivakoti R., Siwek M., Hauer D., Schultz K.L., Griffin D.E. Induction of dendritic cell production of type I and type III interferons by wild-type and vaccine strains of measles virus: role of defective interfering RNAs. J. Virol. 2013. vol. 87. no. 14. pp. 7816-7827.

20. Steinman R.M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol., 1991, vol. 9, pp. 271-296.

21. Woong-Kyung Suh. Life of T follicular helper cells. Mol. Cells, 2015, vol. 38, no. 3, pp. 195-201.


Review

For citations:


Talaev V.Yu., Babaikina O.N., Talaeva M.V., Voronina E.V., Zaichenko I.E. Effect of measles vaccine on maturation of human dendritic cells in vitro. Public Health and Life Environment – PH&LE. 2019;(8):61-66. (In Russ.) https://doi.org/10.35627/2219-5238/2019-317-8-61-66

Views: 256


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-5238 (Print)
ISSN 2619-0788 (Online)