Silicon, Its Forms and Methods of Determination in Water Bodies: A Review
https://doi.org/10.35627/2219-5238/2022-30-6-15-22
Abstract
Background: Characteristics of silicon and its compounds found in water bodies and recently updated standards for their content in drinking water regulated by Russian Sanitary Rules and Norms SanPiN 2.1.4.3685–21, Hygienic standards and requirements for ensuring safety and/or harmlessness of environmental factors for humans, necessitate optimal and affordable methods of determination of silicon for drinking water quality control purposes.
Objective: To summarize published data on the forms of silicon and methods of their quantitative determination in source and drinking water.
Materials and methods: Information and analytical methods based on summarization and analysis of data of scientific papers published in 1923–2020 and cited by Scopus and RSCI international scientometric databases were applied. The search terms included silicon, drinking water, silicon compounds, and methods of quantitative determination. The initial sample consisted of 57 articles, of which 14 were excluded after primary screening and 43 publications compliant with selection criteria were reviewed.
Results: Published data summarization has demonstrated the prevalence monomeric and dimeric species of silicic acid and soluble silicate ions in most water bodies.
Conclusion: The silicomolybdic acid spectrophotometry is the method of choice for determination of silicon concentrations in source water.
About the Author
D. B. KamenetskayaRussian Federation
Daria B. Kamenetskaya, Cand. Sci. (Biol.), Senior Researcher, Department of Physicochemical Research and Ecotoxicology
Bldg 1, 10 Pogodinskaya Street, Moscow, 191121
References
1. Vapirov VV, Feoktistov VM, Venskovich AA, Vapirova NV. On silicon’s behavior and its biological role in nature. Uchenye Zapiski Petrozavodskogo Gosudarstvennogo Universiteta. 2017;(2(163)):95-102. (In Russ.)
2. Khodorovskaja NI, Sturova MV. Research of influence of silicon/phosphorus concentration on the diatomic microflora development inside the water reservoir. Izvestiya Chelyabinskogo Nauchnogo Tsentra UrO RAN. 2002;(2):111-120. (In Russ.)
3. Kulikova AKh. [Silicon and Silica-Rich Rocks in the System of Agricultural Crop Fertilizers.] Ulyanovsk: P.A. Stolypin Ulyanovsk State Agricultural Academy Publ.; 2013. (In Russ.)
4. Conley DJ. Riverine contribution of biogenic silica to the oceanic silica budget. Limnol Oceanogr. 1997;42(4):774-777. doi: 10.4319/lo.1997.42.4.0774
5. Chan SH. A review on solubility and polymerization of silica. Geothermics. 1989;18(1-2):49-56. doi: 10.1016/0375-6505(89)90009-6
6. Voronkov MG, Kuznetsov IG. [Silicon in Wildlife.] Novosibirsk: Nauka Publ.; 1984. (In Russ.)
7. Kambalina MG, Skvortsova LN, Mazurova IS, Guseva NV. On the issue of methods for determining silicon soluble compounds in water and the techniques of its desiliconization. Izvestiya Tomskogo Politekhnicheskogo Universiteta. 2013;323(3):18-22. (In Russ.)
8. Jugdaohsingh R, Anderson SHC, Tucker KL, et al. Dietary silicon intake and absorption. Am J Clin Nutr. 2002;75(5):887-893. doi: 10.1093/ajcn/75.5.887
9. Robberecht H, Van Cauwenbergh R, Van Vlaslaer V, Hermans N. Dietary silicon intake in Belgium: Sources, availability from foods, and human serum levels. Sci Total Environ. 2009;407(16):4777-4782. doi: 10.1016/j.scitotenv.2009.05.019
10. Linnik PN, Dikaya TP. Concentrations, coexisting forms, and features of silicon distribution and migration in surface waters of Ukraine. Water Resources. 2014;41(6):696-708. doi: 10.1134/s009780781406013x
11. Khoroshilov AV. [Forms of existence of silicon compounds in water.] Energosberezhenie i Vodopodgotovka. 2004;(4(31)):25-27. (In Russ.)
12. Fedotov RV, Fesenko LN, Ignatenko SI. Desiliconization of drinking water by modified media filtration. In: Yakovlev Readings: Proceedings of the Scientific and Practical Conference Dedicated to Academician of the Russian Academy of Sciences S.V. Yakovlev, Moscow, March 15–16, 2012. Moscow: Moscow State Construction University Publ.; 2012:33-39. (In Russ.)
13. Zamana LV, Usmanova LI. Forms of silicon migration in waters in the zone of infiltration effect of the Chita TPP-1 ash dump (thermodynamic assessment). In: Water-Rock Interaction: Geological Evolution: Proceedings of the Fourth All-Russian Scientific Conference with international participation, Ulan-Ude, August 17–20, 2020. Ulan-Ude: Geological Institute SB RAS Publ.; 2020;227-230. (In Russ.) doi: 10.31554/978-5-7925-0584-1-2020-227-230
14. Steblevsky V, Domnin K, Arkhipova E, Teslya VG, Kulakov V. Silicon: Standards of concentration in drinking water and practice. The problem of rationing of silicon in drinking water for Tungus ground water in Khabarovsk. Vodoochistka. Vodopodgotovka. Vodosnabzhenie. 2015;(9(93)):44-54. (In Russ.)
15. Parnyakova LL, Kekina HG, Dubovskoy AV, Aseeva JS, Shedlovskaya IL. Water quality indicators in mineral springs of the Republic of Buryatia. Mikroelementy v Meditsine. 2020;21(2):64-70. (In Russ.) doi: 10.19112/2413-6174-2020-21-2-64-70
16. Dietzel M. Dissolution of silicates and the stability of polysilicic acid. Geochim Cosmochim Acta. 2000;64(19):3275-3281. doi: 10.1016/s0016-7037(00)00426-9
17. Iler RK. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. Trans. from English. Moscow: Mir Publ.; 1982. (In Russ.)
18. Kudryavtsev PG. Methods of synthesis, properties and application of silica-zols for obtaining composite materials. Part 1. Inzhenernyy Vestnik Dona. 2018;(3(50)):3. (In Russ.)
19. Kolesnikov MP. [Forms of silicon in plants.] Uspekhi Biologicheskoy Khimii. 2001;4:301-332. (In Russ.)
20. Karelin FN, Khakimov PO. [Reverse osmotic purification of silicon-containing waters.] Khimiya i Tekhnologiya Vody. 1992;4(4):284-290. (In Russ.)
21. Ofitserov EN, Rjabov GK, Ubaskina JA, Klimovsky AB, Fetjuhina EG. Silicon and humic acids: Modelling of interactions in soil. Izvestiya Samarskogo Nauchnogo Tsentra Rossiyskoy Akademii Nauk. 2011;13(4-2):550-557. (In Russ.)
22. Matichenkov VV, Bocharnikova EA. The relationship between silicon and soil physical and chemical properties. In: Silicon in Agriculture. Studies in Plant Science. Amsterdam: Elsevier; 2001;8:209-219. doi: 10.1016/S0928-3420(01)80017-3
23. Matychenkov IV, Khomyakov DM, Pakhnenko EP, Bocharnikova EA, Matychenkov VV. Mobile SI-rich compounds in the soil–plant system and methods for their determination. Moscow Univ Soil Sci Bull. 2016;71:120–128. doi: 10.3103/S0147687416030054
24. Mokrousova IV, Lapteva SB. Some results of the investigation of the geochemical mobility of macroelements in peat deposits. Trudy Instorfa. 2018;(17(70)):3-7. (In Russ.)
25. Gorbachev AL. Some indicators of the chemical composition of drinking water and their impact on the health of the population of Magadan. Mikroelementy v Meditsine. 2021;22(2):17-24. (In Russ.) doi: 10.19112/2413-6174-2021-22-2-17-24
26. Kambalina MG, Skvortsova LN, Mazurova IS, Guseva NV, Bakibaev AA. Investigation of the forms of silicon in natural waters with a high content of dissolved organic substances. Izvestiya Tomskogo Politekhnicheskogo Universiteta. 2014;325(3):64-70. (In Russ.) doi: 10.1016/j.proche.2014.10.008
27. Diénert F, Wandenbulke F. [On determination of silica in water.] Comptes Rendus Séances Académie Sci. 1923;176:1478–1480. (In French.)
28. Varshal GM, Dracheva LA, Ksenzenko VI, Zamkina MS. [Quantitative determination of various forms of silicic acid in surface waters.] In: Proceedings of the 25 th Hydrochemical Meeting “Current Status and Prospects for the Development of Research on Pollution and Self-Purification of Surface Waters on Land”, Novocherkassk, May 16–18, 1972. Novocherkassk; 1972. (In Russ.)
29. Myshlyaeva LV, Krasnoshchekov VV. [Analytical Chemistry of Silicon.] Moscow: Nauka Publ.; 1972. (In Russ.)
30. Standard Methods: 4500-SiO2 C: Silica by Molybdosilicate Method. Accessed June 24, 2022. https://www.nemi.gov/methods/method_summary/7411/
31. Bekbulatova IA, Skvortsova LN, Shchegoleva IS. Determination of silicon in natural waters by spectrophotometry using modern methods of sample preparation. Izvestiya Tomskogo Politekhnicheskogo Universiteta. Geological Resource Engineering. 2017;328(7):32-39. (In Russ.)
32. Selivanova TV, Vishnikin AB, Tsyganok LP. Sorption—spectrophotometric and visual test determination of trace silicon as an ion associate of 12-molybdosilicate with crystal violet. J Anal Chem. 2010;65(2):142-147. doi: 10.1134/s1061934810020073
33. Saprygin AV, Golik VM, Trepachev SA, Golik SV, Kuzmina NV. Silicon direct determination method development with dynamic reaction cell inductively coupled plasma mass spectrometry. Analitika i Kontrol’. 2011;15(1):64-77. (In Russ.)
34. Fehse F. The determination of silicon in deonized process water by graphite furnace AAS. Spectrochim Acta B: At Spectrosc. 1984;39(4):597-598. doi: 10.1016/0584-8547(84)80067-1
35. Kambalina MG, Pikula NP. [Atomic absorption determination of silicon content in natural waters.] Izvestiya Tomskogo Politekhnicheskogo Universiteta. 2012;320(3):120-124. (In Russ.)
36. Shtin TN, Neudachina LK, Shtin SA. Determination of the dissolved forms of silicon in natural drinking water using high-resolution continuum-source electrothermal atomic absorption spectrometry. Zavodskaya Laboratoriya. Diagnostika Materialov. 2021;87(3):11-19. (In Russ.) doi: 10.26896/1028-6861-2021-87-3-11-19
37. Ikedo M, Mori M, Kurachi K, Hu W, Tanaka K. Selective and simultaneous determination of phosphate and silicate ions in leaching process waters for ceramics glaze raw materials of narutal origin by ion–exclusion chromatography coupled with UV-detection after postcolumn derivatization. Anal Sci. 2006;22(1):117-121. doi: 10.2116/analsci.22.117
38. Mas-Torres F, Munхz A, Estela JM, Cerdа V. Simultaneous determination of phosphate and silicate in waste water by sequential injection analysis. Analyst. 1997;122(10):1033-1038. doi: 10.1039/a701646h
39. Nekoei M, Mohammadhosseini M, Zarei K. Simultaneous kinetic determination of phosphate and silicate by spectrophotometric H-point standard addition method. J Chin Chem Soc. 2008;55(2):362-368. doi: 10.1002/jccs.200800053
40. Danilina EI, Orlova NG. Simultaneous kinetic determination of phospates and silicates in the form of vanadomolibdoheteropoly acids. Vestnik Yuzhno-Ural’skogo Gosudarstvennogo Universiteta. Seriya: Khimiya. 2011;(33(250)):61-67. (In Russ.)
41. Medvetskii AV, Tikhomirova TI, Smolenkov AD, Shapovalova EN, Shpigun OA. Sorption-chromatographic determination of phosphate and silicate ions in waters as molybdic heteropoly acids. Zhurnal Analiticheskoy Khimii. 2007;62(3):213-218. doi: 10.1134/s1061934807030033
42. Krokhin OV, Dubovik DB, Ivanov AV, Shpigun OA. [Determination of silicon and phosphorus in the form of molybdenum heteropoly acids by ion-pair reversed phase high-performance liquid chromatography.] Vestnik Moskovskogo Universiteta. Series 2: Chemistry. 2002;43(1):20-24. (In Russ.)
43. Maslov OD, et al. Determination of Aluminum and Silicon Content in Water Samples by Nuclear Physical Methods Using XRFA and the MT-25 Microtron. Communication of the Joint Institute for Nuclear Research. Dubna: JINR; 2011. (In Russ.) Accessed June 24, 2022. http://www1.jinr.ru/Preprints/2011/064(P6-2011-64).pdf
Review
For citations:
Kamenetskaya D.B. Silicon, Its Forms and Methods of Determination in Water Bodies: A Review. Public Health and Life Environment – PH&LE. 2022;(6):15-22. (In Russ.) https://doi.org/10.35627/2219-5238/2022-30-6-15-22